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Abstract—The Robotic Space Simulator was developed as a
physical simulation for in-space manipulation tasks. It incorpo-
rates external inputs to its dynamics simulation via force/torque
sensors mounted to the 2 6-DoF Stewart platforms which
compose its primary structure. Each platform is augmented
with an additional degree of freedom in the form of an auxiliary
axis - one in translation and one in rotation. Previous work has
not effectively included the additional workspace provided by
these auxiliary axes. Additionally, it limited the use of external
force/torque inputs to the case of platform translation only
because the external forces/torques due to platform motion and
gravitational force were not removed from the sensor inputs
prior to inclusion in the dynamic simulation. In this work,
we address each of these limitations. We develop and test
two methods of auxiliary axis control: Cartesian Workspace
and Joint Cost-Function, and find that both methods are an
improvement over the existing system. Additionally we develop
and test a method for calculating the mass properties of
hardware mounted to the force/torque sensors and a dynamics
compensation method for this hardware. Using this technique
we are able to effectively compensate for gravitational force in
different platform orientations, and achieve zero-g behavior of
the system.

I. INTRODUCTION

Simulations are a critical component of developing in-
space robotics, especially for remote proximity operations
where two spacecraft will be in contact. Recent work at
NASA [1] has developed a software simulation for this case,
but the physical simulation options are limited. Traditional
options include air-bearing floors [2], underwater robotics
[3], or robotic manipulators [4]-[9]. Air-bearing floors are
generally limited to planar motion, and have limited runtime.
Underwater platforms require waterproofing of the test arti-
cles and include viscous friction not present in space. Using
parallel manipulators as in [5]-[7] is a popular choice for
their relatively high payload and good manipulability, but
their workspace size may be small. Serial manipulators are
also a popular choice [4], [8], [9], and have a much larger
workspace but lower payloads.

The Robotic Space Simulator (RSS) is a newly-developed
14-DoF physical simulation with additional manipulators
for zero-g interactions between two spacecraft. The system
consists of two parallel 6-DoF Stewart platforms modified
to include an additional 7th DoF (Fig. 1). The first plat-
form (hereafter, the “slide platform™) rides on a 6m track,
providing a significant increase in its workspace along one
translational axis (xz-axis). This additional DoF is intended
to support simulating the final approach to an objective

spacecraft prior to contact. The second platform (hereafter,
the rotary platform”) adds two rotations in the yaw- axis, al-
lowing increased range for manipulation tasks during contact.
In this paper we extend the RSS capabilities by addressing
two simplifications employed during initial validation of the
system (Fig. 2).

The first improvement we make is better control of
each platform’s auxiliary (aux) axis. The Stewart platform
workspaces are smaller than the aux workspaces, so it is
critical to use the aux axes efficiently. This paper describes
two methods to improve the effective control for each aux
axis, one in terms of workspace allocation (Section II-A)
and the other in terms of a joint-based cost function (Section
II-B).

The second improvement is dynamics compensation for
simulation hardware (Section III). The RSS utilizes 6-axis
force/torque sensors (FTS) as inputs to the spacecraft dynam-
ics simulation. These sensors are mounted beneath a structure
with appreciable mass and read changes in the gravitational
load of the structure as the platform moves. As a result, we
restricted the platforms to translation only. In this paper we
describe the methods utilized to implement zero-g dynamics
with full SE(3) control. These include calculating the inertial
properties of the sensor mounted hardware and removing the
gravitational force from the spacecraft simulation dynamics.

Fig. 1: The RSS rotary platform (front) and slide platform (back)
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Fig. 2: RSS Dynamics Simulation: (a) Initial System Validation and (b) Component improvements included in this work

These developments continue to improve the fidelity of
the RSS system and its capability to provide a high fidelity
terrestrial space robotic manipulation testbed.

ITI. AUXILIARY AXIS CONTROL

The RSS dynamics simulation processes force and torque
inputs in Cartesian space, and outputs encoder counts to the
proprietary low-level control computers for each platform.
Inputs are provided by an operator simulating spacecraft
attitude system controls and force/torque measurements from
sensors mounted on the platform surface.

In the current system configuration, control of each plat-
form is implemented independently. Each platform imple-
ments a Jacobian-based feed-forward velocity controller us-
ing dual quaternion kinematics [10]. The inputs are combined
and applied to the simulated spacecraft’s center of mass, then
converted to a velocity using a mass-spring-damper model,

F=Mi—- Bi+Kx (1)

where F' € R® combines the externally applied wrench
and input attitude controls, M the satellite’s desired inertial
properties, and & € RS the satellite’s acceleration. Note that
for in-space applications, we are particularly interested in the
case with no damping or spring B = K = 0.

Integrating (1) gives the spacecraft’s velocity ©. We use &
and the Jacobian of the platform to calculate joint commands

i=J' 2)

where ¢ € R” is the velocity of the platform axes including
the extra axis, and J' is the Moore-Penrose inverse [11] of
the combined platform and aux axis Jacobian. The Jacobian
for strictly the platform is calculated as in [10], and J in (2)
is modified due to the additional DoF. In prior work, motion
along the respective aux axis was split equally between itself
and the platform. The limits of the platform actuators were
reached prior to the limits of the aux axes, limiting the
available workspace to the system. In the following section,
we describe the development of a control system to take
advantage of the additional workspace provided by the aux
axes.

The desired system behavior is to prefer motion in the aux
axes. To achieve this, we have implemented and tested two
methods: a Cartesian workspace based method and a joint

cost-function based method. In both cases, we modify the
above description of the RSS control system as follows:

1) Compute aux axis velocity based on methods described
in either of the following subsections.

2) Remove the computed aux axis velocity from the
relevant Cartesian platform velocity axis.

3) Change Eq (2) to calculate platform leg velocities only,
where J becomes the Jacobian of the platform only

A. Cartesian Workspace Method

The workspace for a Stewart platform is dictated by its
geometry with respect to the relative positions of the leg
attachment points and the leg length limits [12]. For the
purposes of controlling the aux axes, we are interested in
the workspace in the z-axis of the slide platform and the
yaw-axis of the rotary platform. For the remainder of this
paper, unless otherwise specified, we restrict our description
to the slide platform only. Without a loss of generality, the
methodology holds for the rotary platform as well.

We implement a position controller with the desired posi-
tion as a function of the available workspace in the aux axis
and its platform corollary. We define the following terms:

WSplqe: percentage of workspace remaining in the
relevant platform axis (i.e., x- or yaw-axis)
WSqyy: percentage of aux axis workspace remaining

and the error to be controlled

€ = WSplat — WSguzx- 3)

We then calculate a control wrench for the aux axis
Fauz = Kq€ + er “)

where K, is a tunable proportional gain set to 1000 for the
testing reported in this work, Kg = 2,/K, M is a critically
damped derivative gain based on the mass of the simulated
satellite (M), and é is the time derivative of (3) obtained
by finite difference method. Integrating (4) gives the aux
axis velocity. This velocity is subtracted from the platform
velocity such that the overall payload velocity is conserved,
effectively using the redundancy of the system.

The primary limit to this control method is the ability to
compute the workspace of the platform in near real time. The
challenges and a promising solution are described in [13], but
the solution was not pursued within the scope of this paper.
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Fig. 3: Impulse response using workspace control
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Fig. 4: Constant velocity (right) and acceleration (left) responses
using workspace control

As a proof of concept, the controller was tested on the slide
platform with a simplified spherical workspace calculation
ignoring platform orientation. To calculate this workspace,
the z-axis workspace boundary is defined as

m  plat,
2 platz,maa:

®)
where plat,a, = £[0.45m,0.45m,0.30 m] defines a re-
duced volume from the true platform workspace. The con-
troller in (4) now operates with a dynamically sized platform
workspace.

Initial testing of the controller was accomplished via
impulse by moving the aux axis to a location away from its
neutral position (4+2.0m) while keeping the platform fixed
in its neutral position. Once established, the controller was
enabled, and the aux axis and platform established an equal
relative position within their respective workspaces (Fig. 3).

The primary benefit of this controller is to maximize the
total workspace so the most relevant testing region is near the
workspace limits. The desired behavior is the platform and
the aux axes approaching their limits in tandem. This aspect

m  platy
T = plat cos————>—)(cos
bound p w,maac( 2 Platy,max )(

Dynamic Cartesian Workspace Control
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Fig. 5: Controller performance during dynamic sizing of platform
workspace
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Fig. 6: Workspace aux controller performance during simulated
spacecraft approach

of the controller was tested first by inputting a constant x-
axis velocity and allowing the system to slowly approach
its limit. The system maintained near-zero controller error
for the entire operation, and was able to achieve maximum
workspace utilization in both the aux and the artificially
reduced platform axes (Fig. 4). Next, we repeated this test
with constant z-axis acceleration, again driving the system
to its axis limit, and again maintaining near-zero error.

The above test results are given for neutral platform y
and z positions, keeping the x-axis workspace constant. To
evaluate the performance of the dynamic workspace sizing,
we established a similar position to the impulse testing
performed previously, except in this case we alternatingly
initiated testing by fully extending the platform in the y or
z directions. Once the controller was enabled, we moved
the platform from upper to lower limits of y and z axes,
observing the change of available workspace in the x axis.
The changing workspace limits of the platform’s x axis
required the controller to reposition the aux axis in order to
maintain a common ratio between it and the platform z axis
available workspace. The controller performed as expected



over the entire sequence, maximizing available workspace
by effective positioning of the aux axis (Fig. 5). Finally, we
performed an end-to-end test, with an operator varying the
motion in a non-scripted manner through full range of motion
in a simulated spacecraft approach scenario. Fig. 6 shows
the dynamic sizing of the platform as well as the controller
performance throughout this test.

B. Joint-Based Cost Function Method

In order to minimize the complexity of computing the
workspace of a Stewart platform as a part of the RSS control
loop, we have implemented an alternative control method
for the RSS aux axis based on a cost function of each joint
position. We define a parabolic cost function

7
C= Zai((ﬁ — q0,)? (6)
i=1

with ¢ a 7-element vector of actuator positions (including the
aux axis), go a 7-element vector of actuator neutral positions,
and « a vector of weights for each joint. The weight value
for each leg of the platform is set to 1, and the weight for
the aux axis is a tunable parameter, set to gy, = 0.30 as
this value was found to give good results during testing. We
seek to minimize this cost function via its derivative. In the
case of the slide platform

e < 9q;
Iz ZZQQi(Qi—QO,i)% =0 (7
1

The partial derivative with respect to x of each joint is a
component of the platform Jacobian, and the partial derivative
of the aux axis with respect to x is —1 because it requires
the platform to move in the opposite direction to maintain
an EE position. We then define the error function e to be (7)
and calculate a control wrench for the aux axis as

oC oC
]:au:v :Kdi“eraix :Kdé+Kp€ (8)

ox

with K, = 200 and K4 = 2,/K,M as in Section II-A.
We tested this controller similarly to the workspace con-
troller, with results shown in Figures 7-10. In cases where
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Fig. 7: Impulse response using cost function control

motion is restricted to the z-axis, and all other axes in
their neutral position, the controller behaved as expected,
maximizing the aux axis workspace. Moving the platform
along the y- and z-axes, yielded less straightforward results
(Fig. 9). In the case of motion in y, the changing leg lengths
which compose the cost function offset each other resulting in
near-zero aux axis motion. Had the aux axis moved forward,
it would have provided additional reach for the platform
in the y-axis by minimizing the platform extension in the
x direction. In the case of motion in z, the aux axis did
not center itself beneath the platform at full extension and
moved further from center at full retraction. In both cases
this behavior artificially limited the z-axis workspace.

C. Auxiliary Axis Control Results

Both methods of aux axis control are improvements over
previous work. However, both are limited in different ways.
The Cartesian Workspace method provides a high degree of
control and effectively utilizes the available workspace of
the combined system. To fully realize the benefits of this
method we need to address the problem of calculating the
true workspace boundary during runtime. The Cost Function
method is simple to compute and is agnostic to translations
or rotations of the platform. The cost function chosen for this
analysis needs to be improved to avoid limitations on axes
other than the aux-aligned platform axis. This could mean
increasing the cost more aggressively as each actuator ap-
proaches its limit (e.g., exponentially) or defining a different
cost function for the aux and platform actuators.

III. DYNAMICS COMPENSATION

The RSS is intended to be a physical simulation of two
contacting orbital bodies. Accurately measuring the contact
forces between the two platforms is critical for safety and
simulation fidelity. The weight and dynamics of any hardware
mounted above the FTS must be compensated for to measure
contact forces.
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A. Payload Dynamics and Compensation

The FTS outputs the 3 reaction forces and 3 reaction
torques measured at its output surface. The signal comprises
of components from

« the weight and inertia of the object mounted above it,

« internal dynamics of the object if it is not static, and

« external loads applied to the object.

For the purposes of this work, we are focused on accurately
measuring the externally applied loads, and only consider
static mounted objects with no internal dynamics. Following
the notation in [14], the external load is

Feat = [Teact feact]T = Fs — Fayn ©)

with F € RS comprising of torques 7 and forces f. The
sensor measurement is Fg, and Fg,, is the wrench caused
by the dynamics (including gravity) of the mounted object,
expressed in the sensor frame.

We can calculate Fy,, at each time given the object’s
mass properties and the platform position, velocity, and
acceleration. The mass properties include the mass, inertial
matrix, and center of mass location. Note that these are very
likely to be different from the simulated mass properties in
(1). We define the following frames:

o {0} the spatial frame where gravity is fixed

o {P} the body frame attached to the moving platform’s

top surface

e {D} the body frame attached to the mounted object’s

center of mass. This is fixed with respect to {P}
o {S} the frame of the FTS, fixed with respect to {P}

We calculate the dynamics of these frames with

= w [

where Vy € RS is the twist of frame {0} with angular velocity
w and linear velocity v, and Vy is the acceleration of {0}
using gravity vector g. Assuming we know the position of
{P} with respect to {0}, Top, and the { P} frame’s velocity
Vp and acceleration V given in { P}, we calculate

VP - V + [Adpo]vO + [ad\)PD}P

(10)

(11)
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Fig. 10: Cost function controller performance during simulated
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where [Ad] and [ad] are the adjoints of homogeneous trans-
forms and twists respectively, as given in [14]. The velocity
and acceleration of the mounted object is then

Vp = [Adpp|Vp, Vp =[Adpp|Vp (12)

The dynamics for frame {D} are given as
Fp =GpVp — ladyp)GpVp (132)

_|Z 0 6x6
G = {O mI} eR (13b)

as in [14] with inertia 7 € R3*3 and mass m. The wrench
at the sensor is found with a change of reference

Fayn = —[Adps|T Fp (14)

where the —1 multiplier is included because the sensor
measures the reaction force. Eqs (9) and (14) allow us to
calculate the externally applied wrench that is used as the
input for the dynamic simulation in (1).

B. Payload Mass Properties Identification

The above section details how we remove the mounted
hardware’s weight and dynamics from the FTS signal. It
assumes known mass properties of the equipment. We can
use the FTS itself to identify those mass properties. We break
this into three steps:

1) Calculate the mass of the mounted hardware
2) Calculate the center of mass of the mounted hardware
3) Calculate the inertia of the mounted hardware

To calculate the mass, we begin with the relationship

fs = frias + mRTg (15)

where fg is the sensed force, fpiqs is some unknown bias
of the sensor with respect to force, m is the mass of the
hardware, R is the rotation matrix of the sensor frame {S},
and g is gravity as in (10). Given data collected for 7 samples,



the values of m and fp;,s can be estimated with a least-

squares regression of the form Ax = b using the parameters

I Rgg [so

A: . . , b: : , X = {fblab] (16)
. m

fs.i

To calculate the center of mass, we use

1 R;Tg

TS = Thias T T X fweight = Tbias — [mRTg]r (17)

where Tg is the sensed torque, 7345 1S some unknown bias of
the sensor with respect to torque, r is the vector locating the
center of mass with respect to the FTS, and fyeight = mRTg
is the gravitational force calculated from the regressed mass
in (16). The bracket notation [14] denotes the 3xz3 skew-
symmetric representation of the cross-product. We again
perform a least-squares regression to solve for

x = [Thias 7" (18)
by which we obtain the location of the center of mass and
the sensor bias with respect to torque.

In order to obtain the inertia components of the object, we
assume it is a rigid body and begin with the dynamics given
by (13a). This is regressed similarly to (16) and (18) to solve
for the spatial inertia components

X = [IZL’I Izy I:r:z Iyz ]T

I.. 19)

Ty
C. Dynamics Compensation Results

To test both the dynamics compensation and the mounted
hardware mass identification, we implemented a script to
move the Stewart platform through a repeatable set of poses
and orientations. The orientations include roll, pitch, yaw
angles of [—30°,—15°,0°,15°,30°] and permutations of
each. The position of the table Top and the sensor reading
Fg are recorded at 250 Hz throughout the test.

To identify the object mass properties, the table position
is fit to a cubic spline, which yields the table velocity and
acceleration. These are used with the sensor data in the
regressions in (16), (18), and (19) sequentially to respectively
find the object mass, center of mass, and inertia matrix.

We tested the regression with a statically-mounted UR20
manipulator (Fig. 1). The arm and its mounting hardware
are known to be 79.5kg, and the regression calculated a
mass of 83.2kg. The RMSE for the mass, center of mass,
and inertia regressions are 3.50 kg, 0.550 m, and 79.1 kg m?
respectively.

During the data collection for the regression, the dynamics
compensation described in Section III was running with a
payload mass of 0kg, which effectively disables the dynamic
compensation. In this case, the external wrench from (9) is
inaccurately calculated as just the measured wrench from the
sensor. Fig. 11 (top) shows the calculated external wrench
for this case, motivating dynamic compensation. The FTS is
biased at the start of the test and starts near 0. However, as
the platform moves to new orientations, there is a constant
non-zero offset in both force and torque. If this was used
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Fig. 11: Comparison of the uncompensated (top) and compensated
(bottom) external wrench during the same platform motion

as an input to the platform control, it would result in large
undesirable motions and ruin the simulation fidelity.

Using the regressed mass properties with the dynamic
compensation results in an external wrench as shown in
Fig. 11 (bottom) for the same platform motion profile. The
nominal output is 0 wrench through the test as no external
load was applied. In Fig. 11, the steady state error is reduced
when using dynamic compensation, with error remaining
only during platform acceleration. Note the external wrench
shown in the bottom of Fig. 11 is calculated using O platform
velocity and acceleration in (11). These are noisy to calculate
at run-time and introduce spikes in the calculated Fg,,
during platform acceleration. Faster and smoother estimations
of the velocity and acceleration should improve the dynamic
compensation, but calculating those is left to future work.
The RMSE for the external wrench calculation was 282N
and 59 N m before the dynamics compensation was applied.
Using the compensation reduced the error to 16 N and 4 Nm,
which is more than a 90% reduction for both force and
torque.

IV. CONCLUSION

In this work, we introduced two major improvements
to the Robotic Space Simulator, dramatically increasing its
usable workspace. We introduced two methods for aux axis
control, and demonstrated both work to balance workspace
constraints between the Stewart platforms and their aux axes.
Key results include using the full range of aux motion and
accurately tracking the target EE pose. We also compensated
for the dynamics and gravitational load of test hardware
mounted on the simulator, allowing for full SE(3) control
during simulation runs. We showed the ability to accurately
measure test articles using the FTS, then compensate for
their dynamics, reducing the error in the measured forces by
90+%. Together, these improvements increase the capability
of the RSS to include 3D motion simulations within an
approximate volume of 8 m X 1 m x 0.6 m including roll and
pitch angles up to £30°.
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