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Executive Summary

Parkinson’s Disease is a progressive neurodegenerative disorder that affects critical
biological functionality and includes motor loss issues like freezing of gait. The mission
of the ComSole capstone project, sponsored by Dr.Ya Wang, is to create an insole-based
product that helps fight against these debilitating symptoms through real-time detection
and mitigation. Research into the science behind freezing of gait and similar market
prototypes helped the team understand the most effective hardware choices and layout
to incorporate high-quality data collection as well as reliable and precise stimulation.
Key findings from the aforementioned research, as well as in-depth customer interviews,
showed that a relatively low-cost IMU located in the heel of the foot with a haptic motor
placed on the first metatarsal joint would optimize both input and output quality of an
insole-based gait monitoring device with integrated feedback. Paired with a supervised
and quasi-parametric machine learning model onboard an MCU, this system would be
able to process gait data input and make accurate decisions for feedback output through
the aforementioned modes. In addition, both customer response and clinical trials have
shown that the most effective mode of stimulation is vibrational feedback pulses, with a
need for FoG interventions being as often as multiple times a day. From these findings,
the team was able to formulate design requirements, proceed through stages of design
ideation to refinement, and eventually come to a final concept selection, which has been
named ComSole. This product utilizes a single IMU, MCU, and haptic motor encased in
a TPU outer insole along with the necessary electrical connections and a 3.3-volt, 1200
mAh battery supply. As shown in Figure [I] below, the controller unit and battery supply
were chosen to exist in a case outside of the insole, while the IMU was placed at the heel,
and the haptic motor was placed at the first metatarsal joint. This design was found to
have the best overall ratings across all the major functional requirements as determined
from the aforementioned research.

T

Figure 1: ComSole Final Prototype
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Coupled with the ComSole product, the team also developed a companion mobile
application. This app serves to track user gait data and display pertinent analytics for
both the patient and a medical professional to use and process for a better understanding
of each user’s unique lifestyle. All firmware for the app was developed using a VS Code
extension called Flutter with an SQLite database for local data storage.

Through the development, production, and rapid manufacturing of both product ar-
chitectures, the team was able to successfully accomplish the creation of 5 working insole
sets, one of which had the full model embedded haptic feedback system, three different
firmware packages for data collection and processing, a fully refined mobile application
for gait analytics, and an experimentally tested gait collection procedure. Figure[I|above
shows the final system prototype with the embedded machine learning model and haptic
feedback system, and Figure 2] shows all sets of functional insole products.

Figure 2: Finalized 5 Working Insole Sets

These insoles serve largely as a proof of concept for a future product that needs
continued development. Future work should be largely focused on further electronics in-
tegration, increased machine learning recognition capabilities, and software optimization
efforts. In addition, more patient data will need to be collected, labeled, and used to
train the machine learning model.
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Glossary

Term | Definition
Accelerometer | Device that measures the acceleration of an object rela-
tive to a free-fall observer.
BLE | Bluetooth low energy.
CAD | Computer-aided design.
ComSole | Command Insole.
CSV | Comma Seperated Values
DBS | Deep Brain Stimulation.
EVA | Ethylene Vinyl Acetate.
FEA | Finite element analysis.
FMECA | Failure modes, effects, and criticality analysis.
FoG | Freezing of Gait.
FTA | Fault tree analysis.
Gait | A person’s kinetic movement patterns.
G-code | Geometric Code, used to control a 3D printer.
HoQ | House of Quality.
IMU | Inertial Measurement Unit.
IP | Intellectual Property.
MCU | Microcontroller Unit.
ML | Machine Learning.
MONTI | Monitoring Insole.
MSE | Mean Square Error.
PCB | Printed circuit board.
PD | Parkinson’s Disease.
PLA | Polyactic Acid or polyactide, a plastic material used in

Random Forest Classifier

Sensitivity
SNPS
Somatosensory

Specificity
STL File
TAMU
TPU

WWS

3D printing.

Machine Learning ensemble classifier using multi-
layered decision trees that can better predict and ag-
gregate data-driven outcomes.

Accuracy in detecting an occurrence.

Solution Neutral Problem Statement.

Physical perception of external stimuli like touch, vibra-
tion, pain, or temperature.

Accuracy to detect the lack of an occurrence (false pos-
itives).

Stereolithography file, a mesh 3D model format.

Texas A&M University

Thermoplastic Polyurethane, a flexible material used in
3D printing.

Windy Webb Schoenewald (Parkinson’s Treatment)




1 Introduction and Problem Definition

Parkinson’s disease is a neurodegenerative disorder that affects about 1% of all people
over the age of 60 [I]. It causes several debilitating symptoms, from hand and foot tremors
to freezing limbs for extended periods. The cause of Parkinson’s remains unknown, and
while it is a chronic disease, various treatments can help manage symptoms. One of the
most challenging symptoms is Freezing of Gait (FoG), which affects 38-65% of Parkinson’s
patients [2]. FoG episodes occur unpredictably while walking, preventing the patient from
lifting their foot mid-stride. These episodes can often be alleviated by applying a visual,
auditory, or tactile cue, which helps the patient refocus and regain mobility. Although
existing devices attempt to address FoG, they lack comfort, portability, and consistency
in identifying and mitigating these events.

This senior capstone team, consisting of Tyler Gabriel, Will Grubbs, Ian Lansdowne,
Mark McCulloch, Matt Monson, and Benito Tagle Ochoa, is developing an advanced
insole-based solution to detect and mitigate FoG. The project is sponsored by Dr. Ya
Wang, a researcher in human sensing and activity tracking under the Department of Me-
chanical Engineering at Texas A&M University. Dr. Wang’s lab previously developed
MONTI (Monitoring Insole) [3], an early iteration of an insole designed to monitor Parkin-
son’s symptoms. Building on this research, the team aims to create a next-generation
insole with improved detection accuracy and real-time intervention capabilities.

1.1 Needs Analysis

Being a product designed around people who suffer from Parkinson’s, a full-scale needs
analysis was done in the design portion of the project, which showed several key metrics
and needs from the analysis. A variety of different customer interviews were conducted
to assess the needs and relative priorities for the product, from which the following was
obtained. The three most important metrics identified were on-demand cueing, low cost,
and a preference towards vibrational feedback. Polls from the interviews done can be
seen below (Figures , which highlight these trends.

@ More than once per day
@ Once per day

A few times per week
® Rarely
@ Never

Figure 3: Freezing of Gait Frequency



® Less than $100
® $100 - $150
@ $150 - $200
@ $200 - $250
@ More than $250

Figure 4: Freezing of Gait Assistance Device Pricing

Visual (ex. laser device that

0,
projects a line to step over) 2(33.3%)

Auditory (ex. metronome or

3 (50%
rhythmic beat) (50%)

Vibrational (ex. vibration in feet) 5 (83.3%)

None of these|—0 (0%)

Figure 5: Patient Cue Preference

These needs were critical in establishing a purpose and direction for the project, which
is summarized by the solution-neutral problem statement as “an insole-based prototype
with an integrated mobile application to improve the quality of life for Parkinson’s Disease
patients who deal with Freezing of Gait through real-time detection and intervention.”

The creation of an insole-based FoG detection and mitigation system was the next step
in Parkinson’s disease symptom management. In order for this device to be considered
successful, it needed to fulfill many customer requirements. During customer interviews,
the team found that none of the patients interviewed currently used any sensory cueing
or a data collection device similar to ComSole. Of the many reasons given for this,
weight, ease of use, and accuracy were the most important contributors listed. Upon
further consideration, these needs are intuitive because of the nature of the disease being
treated. Because Parkinson’s, and more specifically FoG, greatly affects motor function,
designing a product that does not make motor function more difficult is essential. For
example, if the product was heavy, then customers who were already struggling with
mobility would have an additional weight to carry with them, which would likely cause
more issues than the product aims to remedy. Furthermore, if the device is difficult to
use, then problems such as insertion, removal, and charging will cause more strife than the
product will remove from everyday life. Using these observations, the team determined
that in order for this product to be successful, it needed to be comfortable, which is best



measured by its weight, ease of use (insertion, removal, and charging), and effectiveness
at real-time detection and cueing of FoG events.

The usage environment for the device is everyday life for Parkinson’s patients. This
means that patients should be able to operate and maintain the device without assistance
from any professionals. Patients should be able to complete all tasks necessary for usage
and management. These tasks include the insertion and removal of the insole, charging,
and data management and visualization. For these tasks to be accomplished, the insole
needed to be lightweight, fit properly into the user’s shoes, be easy to charge, and have
a simple-to-use method of accessing collected data.

1.2 Design Parameters

The target values for the design requirements were determined in a variety of ways,
such as customer interviews, market research, and discussions with sponsors. Based
on the team’s discussions and previous analysis, it was determined that the accuracy
of the insole in detecting freezing of gait was the most important requirement of the
insole. Through discussion with sponsors and reading through research papers they have
published, 90% was seen as an ambitious but reasonable target for the insole based on
the timeline of the project. This means that the machine learning model will have a
90% accuracy in determining when freezing is occurring, and feedback is being provided.
The team didn’t want the insole to be vibrating constantly when it isn’t needed, but
also wanted to ensure that it is vibrating when required. The next most important was
the ability for the insole to be able to provide real-time feedback to mitigate freezing
in a timely manner. The team chose a target of less than 5 seconds between detection
and feedback based on a recommendation from Dr. Wang, along with research paper
data. The next requirement ranked by importance was the cost of the insole. The cost
of less than $200 was determined through customer surveys and interviews, as everyone
the team talked to wanted it to be less than that amount. The goal is to get the price
as low as possible, but this is a good benchmark for the team to strive for. Fourth was
that the insole could extract meaningful gait data, and the target value was a 100 Hz
sampling frequency. These values are more specific targets that are related to the data
that will be collected and displayed by the product. The team determined these mostly
through previous experience with similar types of data collection, as well as discussions
with the sponsors.

The next design requirement was that the insole fit in the user’s shoes. It is important
to make sure that the insoles will be available to as many people as possible, which means
creating multiple sizes that fit different shoe sizes. The early prototypes will fit men’s
sizes 8-11 shoes, and women’s size 7 for data collection, as this is the size for the majority
of the ComSole team, as well as patient foot sizes. In addition to length, the team needed
to ensure that the insole is the correct width for standard shoes. The sixth requirement is
the comfort of the insole, which had a target of 7 on a scale of 1-10. This was subjective
based on surveying people who tested out the prototype, but the team decided that 7/10
was a good minimum comfort level, as this would likely mean that the insole would be
comfortable enough to wear for multiple hours at a time. Next is that the battery life
of the insole lasts at least one week under normal usage on one charge. This target
comes from other market research, as NUSHU (the only market prototype that provides
feedback) has a battery life of 8 hours, and the team is hoping to improve on that. The
team wants to minimize the frequency of recharges for patients who may be forgetful or



struggle with plugging the system in to charge. Finally, the insole requires an onboard
thermal management system. Because this is a product worn directly on the human
body, it is essential that the system detects any thermal runaway events and terminates
all activity if an event occurs. These eight design requirements compose the key factors
that the team has guaranteed to the sponsors that the product will have.

1.3 Functional Structure

The functional modeling process for ComSole helped identify key operations the sys-
tem must perform to meet user needs and design requirements. By breaking ComSole
down into its core functions, inputs, and outputs, the team was able to better understand
the system’s behavior and interactions.

Shoe
Foot

Movement data
Human movement —_—

Detect FOG and

cue out of episode

On/off Physical cu

-

Figure 6: Black Box Model

Figure [6] shows the black box model for ComSole, which was used to map the rela-
tionship between the system’s inputs and outputs at a high level. The key functions were
identified to be power, movement, force, the foot, and the shoe. These inputs interact
with the internal functions of the system to produce specific outputs: a haptic cue when
FoG is detected, data for the app interface, heat generated by electrical components, etc.
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Figure 7: Functional Flow Diagram

A more detailed breakdown of these operations is provided in the functional flow
diagram seen in Figure [7] which shows how data flows through the system: from raw
sensor measurement through processing and classification using a machine learning model,
to delivery of feedback. Alongside movement and force sensing, ComSole manages power
delivery, charge state monitoring, and power optimization features like idle detection and
sleep mode activation. The primary internal functions of the device include:

Data Collection: Movement and force inputs are detected and recorded through
inboard IMUs and other sensors.

Determine Whether FoG is Occurring: The data is filtered and processed through
a machine learning model trained to detect characteristic FoG patterns.

Implement Symptom Mitigation (Cue): When FoG is detected, the system activates
a haptic motor to deliver vibrational feedback to the user.

Store Electrical Energy: The battery stores power and supplies it to all electrical
components.

Support Foot: The device must physically support the user’s foot without causing
discomfort

The structured functional model approach was critical when ensuring all design re-
quirements are tied to a system behavior. For example, the ability to support real-time
feedback is reflected in the transition between data acquisition to cue delivery. Moreover,
the modular power-saving logic contributes to the overall device longevity - an important
factor identified in both the HOQ and customer interviews.



2 System Description

2.1 Overview

The ComSole system consists of a shoe-mounted, wearable device to detect and pre-
vent Freezing of Gait (FOG) in Parkinson’s patients, shown below in Figure |8 It inte-
grates hardware and software components into a small enclosure that can be mounted
onto shoes without significantly impacting gait or comfort. Hardware incorporates a
microcontroller board, an inertial measurement unit (IMU) for monitoring motion, and
a rechargeable battery for implementation in portable systems. These electronics are
housed within a specially adapted PLA casing providing mechanical protection and user
access. A clip or Velcro attachment system secures the case to the shoe, with thermal
vents to avoid overheating. Internal features such as screw holes, recesses, and snap-fit
retainers provide correct alignment and strain relief of the wiring and PCB. The soft-
ware component, visualized as a flowchart in Figure [9] analyzes IMU signals in real-time
to detect aberrant gait signatures that relate to freezing episodes. Once detected, the
microcontroller is able to stimulate piezoelectric vibrators incorporated in the device to
deliver rhythmic sensory input and enable the patient to continue walking. Together, the
mechanics, software, and electronics form a system that can both sense and act on FOG
in real time. The product is lightweight, durable, and ergonomic, ideal for long-term wear
during routine activities.

Table [1| below shows an interface breakdown of the primary systems with their asso-
ciated functional requirements.

Figure 8: Assembly Picture with all Components
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Table 1: ComSole Interface Breakdown with System Requirements

Subsystem Interface System Requirements
Electronics Haptic Motor
e Receive HV signal high and vibrate
at 10K RPM.
Electronics IMU
e Record and transmit 9-DOF abso-
lute orientation data.
Electronics PCB Microcontroller
e Record and wupload IMU data
through I/0 ports
e Control haptic motor and driver
e Run embedded software
Electronics Li-ion Battery

Provide 3.7V at 1200 mAh

Mechanical Design

TPU Insole

Sustain 107 cycles of usage

Withstand up to 300 lbs of human
weight in normal conditions without
electronic deformation

Digital /Software

Digital GUI

Accurately display gait data param-
eters from IMU data transmission.

Mechanical Design

PCB Casing

Protect PCB and battery hardware

Keep electronics contained within
range of insole

Dissipate normal levels of heat from
PCB to keep within operating con-
ditions

Mechanical Design

IMU Casing

Protect IMU from mechanical defor-
mation.




2.2 Electronic PCB

The insole PCB connects the electronic components of the ComSole device listed in
Table |1} including the microcontroller, IMU, haptic vibration motor, and battery. The
team’s PCB was designed by Dr. Ya Wang’s research lab to meet the team’s specifications
for functionality of the device. A schematic of the PCB, included in Appendix[A.T] shows
how each of the electronic components used in the design is connected by the PCB.

Components of the PCB are labeled in Figure [I0L The IMU and haptic motor are
connected by a flexible bridge, which is designed to pass between the inside and outside
of the shoe, routed over the side of the shoe. This flexible portion of the PCB allows the
board to be printed as a single component and unifying the electronics inside and outside
the insole.

Baftery Terminolj
o 5 3+ ©
Haptic Motor Hantic Mot - I!HI I!!I i
Connection aptic Motor -
Transistor o § D:““QQEE 3]11
o u-m-.g. o
od S amo  $
] © i@ o
o 0 o
"q\ o i0h =
oo o
ICM 20948 IMU Flexible PCB 0 § [ §
Connection ESP32 /3/3/ S
Microcontroller— 0 || “Sosauana |§ O
o lnnll .

Mounting Holes

Figure 10: Insole PCB Drawing

2.3 Electronic Hardware Case Design

The hardware enclosure for the ComSole went through several design stages as the
team developed a better understanding of the final components and implementation chal-
lenges. From the start, the team’s main goals were to protect the electronics, keep all
components secure during walking/freezing events, and ensure that the housing did not
irritate the user when making contact with their foot. Additionally, the enclosure needed
to provide easy access to microcontrollers for USB /battery charging and internal main-
tenance while still supporting rapid iteration. Additive manufacturing using PLA was
selected early on because it offered tight tolerances, rigid mechanical behavior ideal for
living hinges and snap-fits, low warping, and fast turnaround time for prototypes.



Figure 11: Original PLA Hardware Case with Externally Mounted Electronics

Figure 12: Original PLA hardware Case Inserted in Shoe

The first version of the case, shown in Figure was very simple. All electronics,
excluding the battery, were mounted externally on the back of the case and secured to
the shoe using a clip that hooked into the shoe, as shown in Figure [I2] The battery slid
into a shallow slot while the entire assembly was clipped onto the shoe. At this point,
the flexible PCB had not been fully developed, so all components were placed on the
outside of the enclosure as a proof-of-concept and for ease of use. While functional, the
design had easily-identifiable drawbacks, such as that the electronics were exposed and
the layout made maintenance difficult, and provided inconsistent tolerancing for securing
the battery. These limitations motivated the need for a fully enclosed and more refined
design.

10



Figure 13: CAD Graphic for the Front Case Iteration 1

Figure 14: CAD Open Position Graphic for the Front Case Iteration 1
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Figure 15: CAD Backside Graphic for the Front Case Iteration 1

The next major iteration, shown in Figure [13|- was the first integrated enclosure
that fully protected the electronics. This version introduced several key mechanical fea-
tures, including a living hinge on the left side that was printed with the entire enclosure
as a single piece, a snap-fit battery mount inside the case, and a snap-fit latch on the
right side for closure without the use of external fasteners. A dedicated PCB mount was
implemented on the right side within the case, along with an external clip that guided the
PCB wiring into the shoe. This design printed successfully on the first attempt, with the
living hinge and snap-fit latch functioning exactly as intended. However, testing revealed
several issues. The rear routing clip created friction on the ankle. The PCB and the
attached IMU were difficult to insert and remove because they had to be slid under the
top slot of the case, USB charging access was partially obstructed, and tolerancing on
the battery mount needed refinement.

Figure 16: Final Case CAD Design

12



These findings guided the development of the final enclosure design, shown in Figure
The rear routing clip was removed entirely and replaced with a Velcro attachment
on the backside of the case, which significantly improved comfort. The top opening was
enlarged to make assembly and disassembly of the PCB and haptic motor substantially
easier. Internally, the battery pocket was shifted to one side to create additional space
for wiring, the voltage regulator, and any flexible PCB routing. The snap-fit latch was
deepened to prevent accidental opening during gait cycles or shuffling, ensuring reliable
operation during data collection. Vertical ventilation slots were added to improve heat
dissipation from the microcontroller and battery during prolonged machine learning and
sensor usage.

Figure 17: Final Design Integration Image

A CAD rendering of this updated design is shown in Figure [I6, and a functional
prototype from the previous iteration is shown above in Figure The engineering
drawings used for manufacturing are provided below in Figures [18]-

13
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Figure 18: Final Case Backside Engineering Drawing
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Figure 19: Final Case Open Engineering Drawing
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Figure 20: Final Case Side-View Engineering Drawing

Several materials were evaluated during the design process. PLA was ultimately se-
lected because it provides excellent dimensional accuracy, rigidity for snap-fit and hinge
features, minimal warping, and an overall clean surface finish. PETG offers more flexi-
bility and higher heat resistance but introduces issues such as stringing, slower printing,
and poorer tolerancing for precision features. Resin printing produces extremely detailed
parts but is too brittle for living hinges and snap-fits, and the post-processing is labor-
intensive. A failed resin print used in testing is shown below in Figure The final PLA
cases, shown in Figure 22], were printed in time for patient testing and performed reliably
throughout all data-collection sessions.

Figure 21: Resin Print Case Fail

15



Figure 22: Final Case Design Prints

2.4 Insole Design

When looking at the physical insole subsystem, the team has made many iterations
and gone through different prototypes to get to the current design. The function of the
insole is to provide support and comfort for the user’s foot while housing some of the
electrical components, such as the IMU and the haptic disk. There were some major
design choices that had to be made and scored against each other to determine how best
to design the insole. When looking at the comfort of the insole, the team had to balance
the thickness, curvature, shape, and hardness.

The stiffness of the insole was mostly how the team came to select a material and the
infill pattern that would be used to achieve a firmer insole. The team wanted to make
the insole soft enough that it would be comfortable to wear for long periods of time,
but firm enough that Parkinson’s patients would be able to feel it well. This firmness is
necessary because Parkinson’s patients have less sense of touch in their feet due to nerve
degradation and need a firmer insole to be able to walk easily.

The insole was fabricated using 85A TPU with a 30% rectilinear infill pattern, selected
after multiple iterations and subjective evaluations that identified this configuration as a
good balance between stiffness, support, and strength. This selection process is described
in more detail later in this section of the report.

The shape of the insole was made to be a pretty standard shape when looking at other
insoles online, and that came in the team members’ shoes. The team wanted the insole to
be wearable by any standard person in any normal tennis shoe and didn’t try to prioritize
any specific or unique foot shape. The standard shape was created, and then this shape
was kept identical for each different shoe size, using scaling techniques in SolidWorks to
maintain it.

The other two aspects had to be balanced and weighed against each other to determine
which criteria to prioritize and which were less important. When looking at thickness, this
factor was going to impact whether or not the electrical components could be felt under

16



the surface of the insole, and this was also going to impact the curvature. The thicker the
insole, the better and more realistic the curvature could be. The team ultimately decided
that minimizing thickness was the least important factor because, as long as the user’s
foot would fit in the shoe with the insole, the thickness would not be that significant.
Also, having a thicker insole allowed for both more curvature and also allowed for more
cushion above the electrical components to make sure the user couldn’t feel them when
walking.

Although the criteria above helped the team end up with the final design, there were
some design iterations previously that the team decided to move away from for certain
reasons. The first design and prototype can be seen in Figure[23|below. This design was a
completely flat insole in the sense that there was no curvature outside of the shape of the
insole. The top and bottom were completely flat. This decision was made because of the
ease of printing and manufacturing, as there were more electrical components inside the
insole at this time, which made it a more complicated design. The team left a channel for
the components and wiring, so that they could be placed in after printing. An epoxy resin
was poured into this channel to hold the components and wiring in place and also protect
them. The main issues that the team found with this insole were the lack of curvature,
hardness, and longevity. Once the resin hardened, it was very stiff and not comfortable
to walk on. The contrast between the soft 3D printed material and the hard resin made
walking on the insole a very uncomfortable experience for the user. The insole also acted
as a mold for the resin, meaning the resin and components could be easily pulled out
of the insole. Overall, this design lacked the comfort and stiffness requirements that the
team was looking for, leading to changes for the next prototype.

Figure 23: MEEN 401 Final Prototype

When the team came back from the summer, there were some major design changes
that had to be made. The electronics were improved (discussed in detail later) to get as
much as possible outside of the shoe. The flex PCB system was created, now requiring
only the IMU and the haptic to be in the insole. Initially, the IMU was embedded in
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the upper section of the insole, but due to the redesigned PCB layout, along with a
recommendation from the sponsor to move it, it was relocated to the heel. This change
created new design challenges since the heel experiences higher contact pressures during
walking. This led to a need for an IMU case to protect the IMU (discussed in detail in
Section 2.4), and it also required some space to be included in the heel so that the IMU
case could not be felt while walking. FEA was performed to get an estimate of how much
space needed to be included (discussed in detail in Section 3.4), and then prototyping
helped confirm that a space of .5 mm was adequate. The haptic cueing is still in its
original position at the first metatarsal joint, as this was the place the team found to give
the most effective feedback.

Along with moving the components around inside the insole, the team also addressed
some of the other problems that were discovered from the prototype in Figure The
team created more curvature in the insole to improve the fit in the shoe and also improve
the comfort. This was done by adding a filet to the top and bottom edges, which required
the insole to be thicker to allow for a filet. Along with the curvature, the team wanted
to cover up the components so that they were completely encased in TPU. This design
change removed the need for the resin and would greatly increase the comfort. Originally,
this was done by printing the insole in 2 parts: the bottom half that held the components
and a cover to glue on top. This would make printing easier by giving each half a flat
surface to print on. However, it was quickly determined that using glue would greatly
reduce the lifespan of the insole, as glue would perform very poorly when it warmed up
in the shoe. Glue also does not perform well in shear, which is what the insole would be
experiencing when someone is walking. To fix this problem, the team decided to print the
entire insole in one piece. To get the electronic components inside, the print would have
to be stopped halfway through, and the components would be placed in before the print
was resumed. The only problem with this was that supports were now needed during
printing, making the bottom curvature slightly rough. However, the improved comfort
for the user and protection for the components made this trade-off worth it in the eyes of
the team. This entire process led to the final design that can be seen in Figure [24] below.
Standardized engineering drawings can also be seen in Figure 25( and Figure [26| below,
with Table [2] showing some of the dimensions based on the insole size.

TR AL

Figure 24: Final Insole Design
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Table 2: Insole Dimensions Based on Shoe Size

Length | Toe box |Disk from |Disk from |IMU from | Cover

Size (a) width (b) | toe (c) side (d) heel (e) |Radius
M5.5/W7 | 240.34 mm | 84.9 mm 45 mm 20.5 mm 24 mm 34 mm
M6.5/W8 | 250.35 mm | 88.45 mm 46 mm 21 mm 24.5 mm 35 mm
M8/W9 |260.36 mm 92 mm 47 mm 21.5 mm 25 mm 36 mm
M9/W10 |270.38 mm | 95.53 mm 48 mm 22 mm 25.5 mm 37 mm
M10/W11 | 279.39 mm | 98.71 mm 49 mm 22.5 mm 26 mm 38 mm
Mens 11 | 287.40 mm | 101.54 mm 50 mm 23 mm 26.5 mm 39 mm
Mens 12 |295.42 mm | 104.38 mm 51 mm 23.5 mm 27 mm 40 mm

To evaluate the mechanical behavior of the insole material and select an appropri-
ate stiffness for comfort and long-term use, a series of uniaxial compression tests was
performed on 3D printed TPU samples. Both 85A and 95A Shore hardness TPU were
tested using a universal Instron mechanical tester with a 5kN load cell at a constant
displacement rate of 2.0 mm/min. All samples were printed at the same thickness as the
final insole to ensure representative stiffness measurements.

Three infill types were studied: rectilinear, gyroid, and 3D honeycomb, each printed
at 15%, 20%, 25%, and 30% infill density. These patterns were selected because they
represent a wide array of mechanical behaviors.

e Rectilinear provides directional stiffness.
e Gyroid has smooth stress distribution and energy absorption.
e 3D honeycomb has a high shear compliance.

For each printed sample, the compressive stress-strain response was calculated by dividing
the load by the initial cross-sectional area and normalizing the displacement by the sample
height. Figure [27] shows all 23 samples before they were tested.
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Figure 27: Printed TPU samples for Mechanical Testing: (a) 85A TPU and (b) 95A TPU
with Rectilinear, Gyroid, and 3D Honeycomb Infill Patterns

To characterize stiffness, the modulus of elasticity F was calculated by fitting a linear
regression to the initial linear region of the stress-strain curve, which corresponds to the
sample’s elastic region. The results showed that stiffness increased with infill percentage
through all the patterns, which is the expected result. Rectilinear infill has the highest
modulus relative to its density. Gyroid and honeycomb patterns had a more gradual
stiffening and a larger strain range before densification. Figure 28 and Figure [29| show
the stress-strain curves for all the tested samples.

Stress vs Strain for 85A TPU
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Figure 28: Measured Stress—Strain Curves for 85A TPU Across Infill Patterns
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Stress vs Strain for 95A TPU
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Figure 29: Measured Stress—Strain Curves for 95A TPU Across Infill Patterns

In Figure 29, it can be observed that 95A has a noticeable stiffness increase over
85A, but based on tested samples and comfort evaluations, the material chosen was 85A
TPU with 30% rectilinear infill. It had a good balance between comfort, stiffness, and
durability. This combination of pattern, infill, and material has a modulus of elasticity
high enough to ensure noticeable haptic cues, while still being compliant enough for
long-term usage without causing discomfort.

2.4.1 Insole Manufacturing

The manufacturing process for the insoles consists of 3D printing each insole from
85A TPU, inserting the PCB in the IMU case, and inserting the IMU into the insole.
The PCB case is installed after the insole is printed. The insoles were manufactured on
a BambuLab P1S 3D printer, shown in Figure [30] since it is capable of 3D printing 85A
hardness TPU with minor modifications and has a print area larger than a size 12 insole.
Printing 85A TPU requires a larger, non-standard 0.6 mm nozzle to extrude the filament,
which was installed on the 3D printer. The Bambu Studio software was used to slice 3D
design files and create Geometric Code (G-code) instructions for the 3D printer.
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Figure 30: BambulLab P1S 3D printer configured for printing ComSole insoles

To prepare to print each insole, the design files for the insole and IMU case were
exported from SolidWorks to a Stereolithography (STL) mesh file and imported into a
3D slicer, pictured in Figure The infill settings were set to 30% Rectilinear, and the
number of perimeters were reduced to 0 to avoid stiff spots inside the insole. The IMU
case was printed with 100% infill to ensure stiffness and geometric integrity. After the
file was sliced, a pause point was placed on the last layer above the IMU cavity, so the
IMU and haptic motor can be placed in the insole. This print-in-place technique allows
the insole to be manufactured without adhesives, since the electronic components can be
placed in the insole before resuming the print as shown in Figure Finally, the insole
G-code can be exported to the 3D printer to manufacture the insole. Each insole takes
between 7.5 and 11 hours to print depending on the insole size. ‘Dummy’ insoles without
electronics were printed for the left shoes for users to have a pair of the same insoles. The
team manufactured 7 pairs of insoles, 6 of them with functional PCBs shown in Figure

91€1d I3d Paimxa). nqueg

Figure 32: An insole with electronics

Figure 31: Insole design file prepared for inserted while the 3D printer code is

3D printing in Bambu Studio paused
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Figure 33: 6 assembled pairs of insoles

2.5 IMU Case Design

The IMU enclosure was modeled in SolidWorks and fabricated using 3D printed PLA
to provide a lightweight, but rigid structure suitable for integration into the insole. The
case consists of two parts bonded together with adhesive, which securely holds the PCB
at the base while leaving a cutout for the IMU sensor. This configuration allows the
sensor to remain flush with the insole surface without protrusion. The upper half of the
case is fixed to the top layer of the insole using adhesive, ensuring that the entire assembly
compresses uniformly with the surrounding insole so the user does not perceive any local
hard spots. A small air gap was added beneath the case to prevent bottoming out
under maximum load, which further maintains comfort during usage. Multiple iterations
were created with variations in case geometry and materials to study their influence on
transmissibility and vibration response. The final design prioritized comfort, reduced
sensor noise, all while ensuring a 1:1 transmissibility ratio within the desired frequency
range, to preserve accurate sensor readings during gait. The final case design can be seen
below in Figure

Figure 34: Current Insole Case Design

24



In order to ensure that the suspended IMU design would not create a noisy or damp-
ened signal, the team constructed and evaluated a 1-DoF spring-damper model. Because
the IMU is suspended in the air, the supporting structure of the PCB and case act as
spring-dampers, creating a potentially oscillatory system. A visual representation of this
system can be seen below in Figure

Fixed Support (Insole Upper Surface)

SH

x(t)

Figure 35: IMU 1-DoF Spring-Damper Model

Using this model and values determined from consulting online data sheets regarding
both the PCB and TPU filament used, Figure shows that at the natural walking
frequency, the transmissibility of the gait is 1, and the transmissibility up to 100 HZ of

noise is not greater than 1.
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Figure 36: IMU Transmissibility Through Frequency Range

Engineering drawings for the IMU case can be found below in Figures [37] and [38
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Figure 38: Upper IMU Case

Combining all of the previous aspects of the system that have been discussed (insole,
PCB case, and IMU case), Figure below shows a model of the physical mechanical
system designed by the ComSole team.
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Figure 39: Entire Insole System Model

2.6 Insole Firmware

Firmware, used primarily on low-level embedded devices such as microcontrollers, was
written to interface sensors and actuators in the insole with the data collection software
and mobile application. The firmware for ComSole, included in Appendix [C.2], runs
on the ESP32 microcontroller and was written in C++ with PlatformIO. The firmware
interfaces with the ICM 20948 IMU over the I2C communication protocol using the
vendor’s library [4], and the haptic vibration motor with a digital output. The ESP32
microcontroller supports Bluetooth Low Energy (BLE), which the team chose to transfer
data from the insole to peripheral devices. The BLE protocol was implemented using
NimBLE-Arduino [5], a Bluetooth software package based on NimBLE for Arduino that
runs on microcontrollers with PlatformIO. The machine learning model in Section
was implemented by exporting the model weights to a C language header file and re-
implementing the Random Forest Classifier in C. The flowchart in Figure [40] shows the
structure of the firmware code.

The ICM 20948 IMU is a 9-degree-of-freedom IMU, which measures each linear ac-
celeration, angular velocity, and magnetic field intensity in three dimensions. The sensor
measurements are read from the IMU using I?C every 10 ms (100 Hz). The IMU data is
processed and repackaged as a character string to send over BLE with NimBLE-Arduino.
The data collection and Bluetooth communication are performed at the same frequency
in the main loop of the firmware code. On startup, the firmware advertises itself with
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the name provided in the firmware configuration file in Appendix [C.I} On each pass of
the main loop, the firmware ensures there is a Bluetooth connection with a peripheral
device. If no devices are connected, it does not send data over BLE to save energy.

The embedded machine learning model is also run in the main loop at 100 Hz. To
use the machine learning model, the firmware first generates features to be input to the
model, detailed in Section [2.7.2 The features are generated from a window of data,
recorded from the IMU over time, and stored in an array. The generated features are
input to a prediction function that produces a probability of whether FoG has occurred.
If the probability is greater than a threshold, then the haptic vibration motor is activated.

The haptic motor is driven by battery power through a transistor, which is activated
by a digital output from the ESP32 microcontroller. When the digital output is high,
the transistor applies the battery voltage to the haptic vibration motor, and the disc
vibrates. This cue can be felt by the user.

Insole Firmware

Vibrate

Start haptic motor
l T
] ! |

FoG Broadcast
— > Recorddata ——< predicted? ~—No® IMU values
to BLE

- . B3 Collect IMU
Initialize BLE ——  Mainloop —*< connected? ~—Yes™ data

t

Figure 40: Insole Firmware Flowchart

2.7 Machine Learning

Machine learning is needed for the ComSole system because it allows the device to
automatically recognize patterns in a patient’s gait that can be classified as FoG events.
Instead of hard-coding rules to classify these discrepancies, a model is trained to learn
these patterns directly from labeled data. This section describes the full pipeline, from
how the data are segmented and labeled to how the final random forest classifier was
trained, tuned, evaluated, and deployed on the insole microcontroller.

2.7.1 Conceptual Background

Supervised learning and classification: In supervised learning, the developer pro-
vides the algorithm with pairs of inputs and outputs and asks it to learn a function that
maps one to the other. In the case of ComSole:

e Inputs: Statistics of IMU signals (linear acceleration and angular velocity over a
short time window).

e Output: A binary label that indicates whether that time window is an FoG event
(1) or normal gait (0).

Because the output is a discrete class rather than a continuous number, this is a clas-
sification problem where the goal is to learn a decision rule that predicts the correct class
for new and unseen walking data.
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If the relationship between input and output were simple and /or known, such as a simple
acceleration threshold, then a simple rule would be enough to detect FoG. However, FoG
events depend on a combination of:

e Magnitudes of acceleration and angular velocity in multiple directions,
e Variability and rhythm of the gait signal,

e Irregular patterns.

These relationships are complex, non-linear, and distinct between patients. Machine
learning allows the product to approximate this unknown mapping without having to
write a threshold for every possible pattern.

2.7.2 Data Segmentation and Labeling

Sliding window segmentation: The raw IMU signals are sampled at 100 Hz. Instead
of classifying each individual sample, short windows of data are analyzed. ComSole uses:

e Window length: 0.5s (50 samples),
e Step size: 0.125s (12 or 13 samples with 75% overlap).

Each window overlaps substantially with the previous one, which allows the model to
precisely capture the events over time while still having enough samples to obtain im-
portant statistics. Figure {41 shows how consecutive overlapping windows slide over the
signal.

0.5s

0.5s

Figure 41: Ilustration of sliding-window segmentation. Each colored bar represents a
0.5s window. Windows are shifted by 0.125s.

Window labeling: The raw dataset has an FoG label for each sample, which was anno-
tated with the ComSole GUI. However, the model uses windows, so each window must be
assigned a label. In the code, it was implemented as: int(w["FoG"] .mean() >= 0.3).
This means that if 30% or more of the data points in the window are labeled as FoG,
then the window is also labeled as FoG. This makes the model sensitive to windows that
contain a significant amount of FoG activity while avoiding labeling windows as FoG do
to an isolated mislabeled sample.
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Feature engineering: Fach 0.5s window is converted into a vector of 48 features.
These features characterize the signal and are computationally inexpensive so that they
can also be computed in the insole microcontroller. For each of the six IMU channels
{acc_x, acc_y, acc_z, gyr x, gyr_y, gyr_z}, the following calculations are performed:

e Mean: average value over the window.
e Standard deviation (0): how much the signal varies.

e Minimum and maximum: smallest and largest sample in the window.

Root-mean-square (RMS): which is RMS = /1 > 27

Energy: % S" a2, the total ‘strength’ of the signal, proportional to RMS?.

e Zero-crossing rate (ZCR): Number of times the signal crosses its mean between
consecutive samples.

To capture the correlation between axes, six correlation features are added. Since cor-
relation measures how closely two signals follow one another over time, it shows whether
motion on one axis tends to increase or decrease in sync with motion on another.

e corr(acc_x,acc_y), corr(acc_x,acc_z), corr(acc_z,acc.y)

o corr(gyr X,gyry), corr(gyr x,gyr z), corr(gyr z,gyr.y)

This is a total of 48 features per window. Before training, each feature is standard-
ized using a StandardScaler, which subtracts the mean and divides by the standard
deviation, to make them comparable in scale.

2.7.3 Model Choice: Random Forest Classifier

Decision trees: A decision tree classifier predicts a class by asking a sequence of yes/no
questions about the feature values, where each internal node checks a condition such as
gyr x_zcr < 0.12. Depending on the answer, the sample follows the right or left branch
until reaching a leaf node, which stores the predicted class (FoG or no FoG) or a class
probability. Figure 42| shows a simple decision tree with 2 conditions.

Figure 42: Decision Tree Example with Two Conditions

Decision trees are easy to interpret; however, a single tree is susceptible to overfitting
training data.
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Random Forest: A random forest is a collection of many decision trees, where each
tree is trained on a slightly different subset of data and features. At prediction time:

1. Each tree outputs a probability that a window is FoG.

2. The forest averages these probabilities of all trees.

3. The final probability goes through a threshold to get a binary prediction.
Some of the advantages of this approach are:

e [t can model complex, non-linear relationships between IMU features and FoG.

e [t is robust to noise and outliers because many trees are averaged.

e It can have a low computational footprint.

2.7.4 Training and Hyperparameter Tuning

The data collected was divided into 3 sets:

e 60% for training

e 20% for validation (Used to tune the probability threshold and hyperparameters)
e 20% for testing (used only for the final performance report).

Data was split on a per-subject basis, to ensure that there was no data leakage between
data sets to so that the model would generalize well between different users and not
overfit to unique patterns.

Handling class imbalance FoG windows are much rarer than non-FoG windows. By
default, a classifier could achieve a high ”accuracy” by predicting no FoG almost all the
time. To counteract this, the random forest was trained with class_weight="balanced",
which re-weights miss-classification penalties so that errors on FoG windows have a
stronger contribution to the loss than errors on the more common non-FoG windows.

Grid search with cross-validation (GridSearchCV): The random forest has sev-
eral hyperparameters that affect its performance:

e n_estimators: number of trees in the forest. More trees usually improve perfor-
mance but increase computational effort.

e max_depth: maximum depth of each tree. Having a set limit can help prevent
overfitting.

e min_samples_split: minimum number of training samples required to split a node.

e min_samples_leaf: minimum number of samples in a leaf node.
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GridSearchCV was used to iterate through a combination of these parameters. For
each combination, the training set was split internally into several folds using
StratifiedShuffleSplit (which preserves the ratio of FoG to non-FoG windows in each
fold). The model was trained on part of the data and evaluated on the remaining part.
This was repeated across folds, and the combination with the best mean F1 score was
selected. The F1 score represents model performance by combining precision and recall
into a single metric. It rewards models that correctly detect FoG while minimizing both
false positives and false negatives.

The final model used 1200 trees, with no maximum tree depth, a minimum number
of training samples of 2, and a minimum number of samples in a leaf of 1.

2.7.5 Threshold Selection and Evaluation Metrics

The random forest outputs a probability p that a window contains FoG. To get a
binary decision, a threshold T is selected. By default 7' = 0.5, but that is not necessarily
optimal, especially because the classes are imbalanced. To fix this, the threshold T was
swept from 0.05 to 0.95 on the validation set, and the F1 score was computed for each
value. Figure shows this curve. The F1 score peaks at around 7' = 0.40, so that was
selected as the operating threshold for both the test set and the embedded model.

Threshold vs F1 Score
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Figure 43: F1 Score as a Function of Classification Threshold
Confusion matrix and performance metrics: Predictions on the test set are sum-
marized with a confusion matrix seen in Figure {44] where:
e True negatives (Upper-left) [TN]: correctly predicted non-FoG windows.
e False positives (Upper-right) [FP]: predicted FoG but actual is non-FoG.
e False negatives (Lower-left) [FN]: predicted non-FoG but actual is FoG.

e True positives (Lower-right) [TP]: correctly predicted FoG windows.
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Figure 44: Confusion Matrix on the Test Set

From these, other metrics can be calculated to evaluate model performance:

TP+ TN

A = 1
Y = TP Y TN+ FP+ FN ()
P .. _ TP (2)
recision = ~FD
TP

Recall (Sensitivity) = ————— 3
ecall (Sensitivity) TP FN (3)
F1 score — 2. Precision - Recall @)

Precision + Recall

Figure shows the overall test results.
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Figure 45: Overall Test Set Performance of the Model

To verify that the model behaves correctly over time, predictions were plotted on
top of the labeled data for a test walking trial. Figure [6] shows an example timeline
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where the predicted FoG episodes (orange dashed line) align closely with the true FoG
labels (blue solid line). Minor timing offsets are expected due to windowing and the 0.5s

duration of each window.

FoG Timeline - lan_10.29_1.csv
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Figure 46: Example FoG Timeline for One Test Recording

2.7.6 Model Interpretability and Feature Importance:

140

One benefit of random forests is that it outputs how important each feature is for the

final decision. Figure [47] shows the top features ranked by importance.

Top Feature Importances
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Figure 47: Top Feature Importance from the Trained Random Forest Model

Several observations align with the original prediction of linear and angular irregular-

ities in shuffling:

e Gyroscope features, especially gyr_x_zcr, gyr_x_energy, and gyr_x_rms, dominate
the top of the list. These capture the quick oscillatory motion in foot rotation,

which is characteristic of a shuffling event.

34



e Zero-crossing rate and energy features are important across axes, which shows that
irregular, high-frequency components in the signal are strong indicators of FoG.

This alignment between the model’s features and observed characteristics of shuffling
in FoG increases confidence that the classifier is learning meaningful patterns instead of
just noise.

2.8 Data Collection Software

Data collection software was developed by the team to receive, record, label, and
display data from the insole during testing. The ComSole data collection software in
Appendix [C.3| was written in Python and collects data from the insole using BLE, records
the data, and displays it in a live graph on a Graphical User Interface (GUI). The data
can be labeled in real time with buttons on the GUI for marking timestamps for the start
and stop of features, including FoG and walking direction. These labeling buttons were
used to label data while recording data on patients at Rock Steady Boxing.

A BLE IMU GUI (2 Devices) VoA X
Scan BLE-LEFT Scan BLE-COMSOLE
~ |  COMSOLE_M10_1 (AD:85:E3:E7:23:AD) -
Connect BLE-LEFT Connect BLE-COMSOLE
Disconnect BLE-LEFT Disconnect BLE-COMSOLE
Start Recording Stop Recording
FoG Turning Left Turning Right Walking Straight Stopped

IMU Acceleration Y
—-0.20

—— BLE-LEFT
—— BLE-COMSOLE
—0.22 1
 —0.24
)
2 M W
<C
~0.281
~0.301
22 24 26 28 30

Time (s)
Connecting BLE-COMSOLE...

Figure 48: Graphical User Interface for Data Collection

The GUI, pictured in Figure 8] is split into sections. The left and right button
sets are for connecting to a left and right insole. Since ComSole has electronics in only
the right insole, the right side interface is used. The interface has a scan button, a
device selection drop-down, and connection/disconnection buttons for interacting with
the Bluetooth device. The user must first scan for the device to populate the device
selection menu, select the correct device, and connect to it. The recording button can
be clicked to begin and end recording timestamped IMU data, saving the data as a CSV
when the recording is finished. The bottom set of buttons is used for labeling data, and
the labels are reflected in the data as separate features for each timestamp. A graph
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is shown with live acceleration data from the IMU, displaying the Y-axis acceleration,
which measures the forward and backward motion of the foot. At the bottom is a status
bar to indicate the Bluetooth status.

2.9 App Design

In addition to the physical insole product, the team determined that a companion
mobile application would enhance the overall usability of the product for elderly patients
and their caregivers.

The mobile app was designed in VS Code using an extension called Flutter. Flutter is
an app development extension that wraps numerous packages together in order to simplify
the app development process. By using Flutter, the team has been able to design an app
that is ready for deployment on both iOS and Android mobile devices, that is capable of
connecting to the insole via Bluetooth, receiving live gait data, processing and displaying
said data, and storing it for future reference. In order to accomplish these functionalities,
various software packages were used. Primarily, flutter_ble_plus was used to create and
maintain the Bluetooth-low-energy connection used for data transfer, and SQLite was
used to create the locally hosted database used for long-term data storage.

Because the app is intended for a primarily elderly audience, the design was focused
on keeping the app as simple and intuitive to use as possible, while still adding value and
usability to the overall ComSole product. With this motivation in mind, the app was
designed with 4 tabs meant to separate key information as intuitively as possible into
Home, Bluetooth, Patient, and Professional pages.

Figure 49| below shows the Home page, which is the page that opens when the app is
first opened.
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Figure 49: App Home Page

The home page contains a welcome statement, a brief explanation of its use, and
instructions to use any of the navigation buttons below to utilize the different features.
At the bottom of the screen, a main navigation bar is always accessible to change between
the various screens.

Figure [50] below shows the Bluetooth page.
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Figure 50: App Bluetooth Page

When first opened, the Bluetooth page has only one inter-actable: the start scanning
button. Additionally, there is an icon with instructions in the middle of the screen
to further suggest to users to use the start scanning feature. Once clicked, the app
autonomously finds all named Bluetooth devices in the area and displays them in a list.
Once the user’s named device appears, all they need to do is click on it, and the connection
is established. This process happens very quickly, typically locating the device within
a second, and shows the device towards the top of the list since they appear in order
located. Once connected, the icon turns green and states connected, providing further
reinforcement that a positive connection has been established.

Figure 51| below shows the patient page.
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Figure 51: App Patient Page

Once connected to the insole, patients should move into the patient portal. This page
is meant to show some simple gait metrics to give patients a general overview of their gait
health, with some simple to to-understand metrics. First, the ”Your Progress” widget.
It shows users daily, weekly, and monthly step totals, so it’s helpful in keeping track
of short-to-medium term walking health. These numbers update as you walk around,
and can only be reset if the app is deleted from the device. Next, the Step Counter
card. This card shows the current connection, not the daily total, steps, distance, pace,
calories burnt, and g-force. The specifics of how each of these metrics is calculated will
be discussed shortly. The final part of the Patient page is the Step Scoreboard. This
shows the user’s top 5 highest step days, with both the date and the step count. The
hope is that this card will motivate users to continue to move even on difficult days as
the disease progresses.
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Figure 52: Step Counter Card

In the step counter card, seen in Figure[52], the main feature is counting the number of
steps a person has taken. Using the data transferred from the insole, the app determines
if a step has occurred if and only if two conditions are met: the magnitude of the insole’s
acceleration has reached 1.1 g, and at least 0.3 seconds have passed since the last step was
recorded. Using a minimum acceleration value allows the app to determine when enough
movement happens fast enough to likely be a step. The value of 1.1 g was determined
experimentally, and it works as a filter for low acceleration movements such as shuffling
feet, and is low enough to register slow steps from elderly patients. Furthermore, the
1.1 g acceleration is found using a 5-point moving average to eliminate any erroneous
values that may be detected by the IMU. The 0.3-second time difference between steps
is also a means to prevent non-steps from being registered from actions like rapid heel
tapping. The time difference is, however, small enough that even very fast walking is
fully captured by the app.

Distance is calculated using double acceleration integration, meaning that the accel-
eration data captured by the insole is multiplied by the time steps in between data points
to find velocity, and that process is repeated to find distance traveled.

Pace is calculated by dividing the total number of steps during the connection by the
time since the first recorded step occurred. This means that the pace is not instantaneous
or over a set time frame, but the average since the first recorded step. Practically, this
means that if the connection is established while stationary, say sitting at a desk, the
user could continue to sit, and the pace would not begin being calculated until the wearer
got up and began to walk around.

Calories are calculated by dividing the number of steps taken by 20. This is a con-
version factor that was determined from investigating various online sources, and it is
approximately the average value referenced online. Calories burned are a very difficult

40



parameter to calculate since they depend on so many factors, such as age, height, weight,
and gender, among other factors, but this provides a rough estimate for users to have
some idea of how their movement directly affects their energy usage.

G-force is the most simply calculated metric, found by taking the magnitude of the
accelerometer data. This parameter doesn’t directly provide information about the pa-
tient’s gait health, but by monitoring it over time, it can provide information on how
their gait health changes. Since the IMU measures acceleration in all directions, the
magnitude tells users how quickly their foot is moving in total. If their gait pace and
distance covered stay the same, but the g-force magnitude decreases, this can inform
users that they are no longer lifting their foot as high when walking. This is because an
unchanging frequency and distance mean that their forward motion has not changed, but
the decrease in magnitude means their motion in another direction has changed.

Figure [53| below shows the professional page. The professional page is meant to house
data useful to users’ doctors. Because the ComSole device is able to collect and transmit
patient gait data throughout their everyday lives, the app has the capability to be a tool
for doctors to gain a better understanding of their patient’s walking health.

Bl Gait Analysis

Accelerometer (mf -
57

Accelerometer (m/ Data Summary
5‘]- @ X-axis @ v-acs @ Z-ans

Figure 53: App Professional Page

Due to time constraints, the professional page shows all of the same information as the
patient page in the Gait Analysis card. This is the primary point of future development
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suggestions in the app to be discussed later in this report. The professional page also
shows a live data chart of the accelerometer data and a summary of the data stream.
These items are useful in ensuring that the app is properly connected to the insole and
that all data is being received.
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3 Analysis for Design

3.1 Embodiment Design Checklist, Risk Analysis, and Stan-
dards

3.1.1 Embodiment Design Checklist

All customer needs identified through customer surveys, needs assessments, and brain-
storming sessions are satisfied with the current design. Using the target metrics developed
in conjunction with the project sponsor, the current design meets all targeted values.

The current architecture is capable of collecting accurate and robust enough informa-
tion for the analysis required to be successful, and the moat design implemented minimizes
any vibrational noise that may exist. The flexibility of the insole material will allow the
haptic motor to vibrate without creating noise in the IMU’s measurements as well.

The chosen 3D printing filament provides the ideal combination of material properties
for this application. The soft 85A filament provides flexibility to bend and maintain
optimal performance in various walking scenarios. The chosen print structure provides
high strength, hardness, and stiffness in the primary loading direction, providing the
support for patients and the protection of electronics required. Because the product is
made of plastic, it is lightweight and has a sufficiently long fatigue life. The uniform
print structure minimizes stress concentrations and allows the insole to wear uniformly
throughout its life cycle. Analysis of the insole has been conducted to show that no
significant resonance will occur to disrupt normal function, and the airy design aids in
optimal heat dissipation.

The chosen design fits securely in shoes, with different sizes being made to fit different
patients. The IMU is secured within the insole, so it accurately tracks all foot motion.

The hardware housing fulfills its primary function of protecting electronics and se-
curing them onto footwear, with secondary functions being cable organization, cable ac-
cessibility, and thermal cooling. Snap-fit latch, hinge, and recessed element provide low-
number-of-parts, efficient solutions for securing electronics and wiring, and vent cutouts
serve as passive air-flow passages. The geometry of the enclosure has recessed pockets,
snap-fit elements, and vents, all dimensioned for strength, and the PLA material was
chosen on the basis of durability and rapid iteration.

Case kinematics are limited to the hinge and latch motion, which play well with
printed tolerances, and energy considerations are limited to heat dissipation, which is
controlled by vent geometry. Safety was considered in terms of rounded edges and smooth
corners to avoid snagging or injury, and venting to avoid overheating risk. Case design
also accommodates ergonomics while still being compact and light in weight, so it does
not hinder walking movement, but with convenient accessibility to charging ports. From
a production perspective, the case is easily made in inexpensive 3D printing, with the only
off-the-shelf piece of hardware required being the small screws used to secure the PCB
board to the case. Quality control has been maintained through consistent PLA print
tolerances, and adhesive bonding of the clip in its recessed pocket ensures reliability,
but long-term wear testing is yet to be performed. Assembly is simplified through a
single-piece open print, with PCB and battery attached straight into recesses, and the
clip being glued into a designed pocket, leaving ports open. As used, the latch enables
frequent opening for servicing, venting prevents heat buildup, and the solutions involving
a clip and Velcro provide a secure shoe connection.

The case life cycle was also considered, as PLA is recyclable, and modular clip and
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battery technology allows them to be replaced without reprinting the whole case. Main-
tenance is also made easy by the snap-fit latch that allows battery replacement or wiring
inspection without difficulty, and the use of Velcro further improves serviceability. The
cost remains low because a commercial clip and PLA filament are required, and design
and production were on time, with fewer redesigns needed for future improvement.

All safety considerations have been made. The electronics inside the insole have been
reinforced with additional protection; all electronics that could be removed from inside
the shoe have been, and all parts have been shown to work together safely.

The insole harness has been specifically designed to match the desired insole feel for the
target demographic. The insole stiffness has been optimized to best support the customer
and provide the sturdy feel that they desire. The insole’s shape has been optimized to
provide the greatest foot support possible, with additional efforts still being made to
further improve the design through customer feedback. The 3D printing process has
been improved multiple times to create the best intrinsic “feel” for the product possible,
and additional means to visually improve the product are being considered, such as using
a fabric cover.

The production process has been performed multiple times. The printing process is
lengthy, but easy to accomplish. Assembly of the product requires the ability to solder,
but parts have been combined where practical to minimize manufacturing efforts. All
materials are easily acquired. Tolerances have been shown to be compatible with minimal
extra space. The insole fits inside the intended shoe size, with multiple sizes being made
for varying customers.

Assembly has been shown to be simple, repeatable, and without ambiguity. The
integration of electronics into the PCB has greatly simplified the production process. All
operational conditions have been considered. The insole has been designed to be resilient,
supportive, flexible, and stiff to satisfy all customer needs as well as ensure no electronics
are damaged. Vibration-damping methods have been employed to better acquire gait
data.

3.1.2 FMECA

In order to properly assess, plan for, and mitigate risk, the team developed a failure
modes, effects, and criticality analysis tool (FMECA) to assess the major failure modes of
all design systems and subsystems within the ComSole product architecture. As seen in
Figures [b4] through [58| below, this was broken down into 4 main subsystems: the external
PCB system, the insole structure, the insole electronics, and the software systems. Within
each subsystem, all major components with probable failure modes were identified as seen

in Figure 54}
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Subsystem Part # and Functions Potential Failure Mode
1.1. Flex PCB connection to IMU board Component Disconnect
1.2. PCB Bluetooth Communication Bluetooth failure
1.3 Battery Early loss of charge
1.4 Battery Thermal Runaway
1.5 Casing Structure Backout of PCB mechanical Fasteners
External PCB System 1.6 Casing Structure Backout of Clip mechanical Fasteners
2.1. TPU Insole Insole shearing
21 TPU Insole Insole delamination/ warping
Insole Structure 2.2. Electronics Adhesive Hardware Pullout from Insole
3.1. Wire connection to Haptic Motor Component Disconnect
3.2 Haptic Motor responsible for stimulation Haptic Motor Failure
3.3 IMU board responsible for data collection IMU board Failure
Insole Electronics 3.4 All Insole Electronics Water damage
4 1. Embedded Data Collection Code non-functional or buggy code
4 2 Embedded FOG Recognition Code non-functional or buggy code
Software Systems 4.3 External Computer Side GUI Code non-functional or buggy code

Figure 54: DFMECA Overview

From these failure modes, potential effects and causes were identified along with the
planned control method to address each mode. These can be seen in Figures [55| and
along with their associated severity, occurrence, and detection scores, respectively. These
three scores were scaled 1-10 to give a summative idea of the risk associated with each
failure mode, given their multiplication. Some of the highest risk modes identified were
buggy detection software, water damage to electronics, and disconnection of the wiring
to the haptic motor.

Severity

Potential Effect{s) of Failure (5)

Component malfunctions or is no longer usable

Data cannot be communicated to the app

Insole no longer tracks FOG or activates cues

Thermal Event, burning and degredation of PCB board and nearby items. Potential harm to user.
Loose PCB, leading to potential disconnection or electronic damage.

Seperation of Clip and Casing, leaving casing hanging on by flex PCB line.

Insole cracks or falls apart, making it less comfortable or unusable

Insole cracks or falls apart, making it less comfortable or unusable

Loose Insole, Electronics Damage, Data Noise

Component malfunctions or is no longer usable

Motor ceases to function, preventing cues from being administered

Loss of IMU data, preventing detection of gait abnormalities.

Short circuits, electronics failures, potential for overheating

Loss of ability to collect,process, and store gait data

Loss of ability to recognise FOG patterns and give haptic motor signal in sufficent time.
Loss or Inmacurate gait data being displayed.

Figure 55: DFMECA Effects
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Potential Causes and Mechanisms of Failure 0“:‘(;?““ Design Control Dﬂfg;““" RPN
Too much strainffriction 2[User Wear 1 18
Faulty signal 3|Antenna signal test 2 24
Over-tracking of gait parameters 3| Battery life test 2 48
Battery Puncture or Defect. 2 |Adequate Casing Design. 2 40
Improper Installation of Fasteners 3|CAD design and Installation Procedures 1 18
Improper Installation of Fasteners 3|CAD design and Installation Procedures 1 21
Faulty Insole Print. 2|Instron tensile strength test 1 14
Faulty Insole Print/ abuse of insole 2|Instron tensile strength test and linear fatigue test 1 14
Inadequite Strength of adhesive. 4 |Early Prototyping and User Wear. 2 48
Too much strainffriction 4Instron bend test 2 72
Cable becoming unplugged 2|Instron linear fatigue test 1 16
Crushing of IMU. 3 |FEA Simulations 1 24
Water/sweat ingress 4|Data collection tests 2 72
Lack of debugging codef hidden edge cases 2 |Patient Trials 4 40
Lack of debugging codef hidden edge cases 2| ML Accuracy Test and System Latency Test 3 42
Lack of debugging code! hidden edge cases 2 | Patient Trials 4 16

Figure 56: DFMECA Causes and Controls

To address these potential risks, controls along with the recommended actions were
listed in Figures and [57], giving a specific test or method of risk mitigation along
with a description of specific action items. The last column in Figure 57| lists the person
responsible for each control action according to the subteam structures the team has been

using.

Description of Action

Rezponsibility &
Target Completion Date

Ensure Firm Solder connections and monitor strain on flex line.

Benito/lan/Will 10/15

Move antenna to a spot with less interference Tyler 111
Program stricter sleep mode settings laniTyler/Mark 11/1
Design Casing to protect battery from damage, Mark 10/10

Ensure all fasteners are installed at the adequate location and torque spec.

Benito/lan/Will 10/30

Ensure all fasteners are installed at the adequate location and torque spec.

Benito/lan/Will 10/30

Controlled epoxy measurment and mixing

Benito/lan/Will 10/15

Controlled epoxy measurment and mixing

Benito/lan/Will 10/15

Test proper adhesivee types and quanitity in intial prototypes and iterate as neccisary. | Matt.Benito, Will 10/30

Try different epoxies

Benito/lan/Will 10/15

Adding stiff inserts near electronics

Benito/lan/Will 10/15

Run FEA simulations and user wear to assess max deformations.

Will 10/6

Increase print infill

Benito/lan/Will 10/15

Debug and improve/improvise code structure from feedback during usage in trials. laniTyler 111
Use test results to validate changes made in code and debugging. laniTyler 111
Debug and improve/improvise code structure from feedback during usage in trials. laniTyler 111

Figure 57: DFMECA Recommended Actions

Below in Figure are the actions taken, as well as a re-evaluation of the RPN.
Nearly all issues have been addressed, with only the battery life still being an ongoing
issue. Future efforts should be made to improve battery life (in-depth discussion included
in the Future Work section of this report.
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Actions Taken Sev (5) Occ (0) Det (D) RPN

Refinforce PCB with electrical tape 9 1 1 9
Testing showed no bluetooth connectivity issues 4 1 1 4
Future work should include using a larger battery 8 6 2 96
Case has been rededigned for improved air flow 10 1 2 20
Testing showed no backout events 6 2 1 12
Clip attatchment changed to velcro, no disconnections during testing 7 2 1 14
NIA

M/A

Insole redesigned so no adhesives necessary. Mo events during testing 6 1 2 12
Instron bend test not possible. Testing showed no such event occurances. 9 3 2 54
M/A

FEA showed appropriate displacement. Test showed no issues. 8 1 1 8
Mo water retention events during testing. 9 2 1 18
Mo connectivity issues during data collection cbserved. 5 1 1 5
Testing showed sufficient reaction time to detected events 7 1 2 14
MN/A

Figure 58: DFMECA Action Results

During the design process, the FMECA was used to guide both software and hardware
design decisions. When designing the PCB case, vents were added early on in the design
to mitigate the risk of overheating, preventing the most dangerous failure mode that
the product could face. Similarly, the flex PCB was reinforced with an electrical tape
wrapping in order to minimize the chance of a breakage occurring, a failure mode that
would result in irreparable damage. When designing the app, software packages with
proven reliability were chosen to minimize the chances of a disconnection.

3.1.3 Fault Tree Analysis

The other form of risk analysis done was a fault tree analysis (FTA), which helped
break down the failure paths associated with the project’s desired outcome of producing
real-time feedback via a vibrational stimulus to help mitigate freezing of gait symptoms.
As shown in Figure 59 below, the tree breaks down each failure path, utilizing Boolean
logic gates as a means of showing the necessary inputs to cause a potential failure output
as you work up the tree. The conclusions that were drawn from the FTA were that failure
can be caused by three main categories: software, hardware, and the battery.
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Figure 59: ComSole Fault Tree Analysis (FTA)

When looking at software, this is mostly focused on the ML model and making sure
that it is able to detect FoG well and activate the vibrational stimulus effectively. Without
a good ML model, the product will not provide a cue whenever it is needed, or it will
provide too many cues, and the user will get frustrated by it. To mitigate this source of
failure, the team spent a lot of time and effort to get a very strong ML model. There
was a large emphasis on getting as much data as possible to train the model on and
make it as good as possible. Moving on to the hardware, this is where more failure
possibilities are present. The haptic disc, haptic driver, and IMU could all have issues
that could result in the insole not functioning anymore. These issues could include wires
coming unplugged, water or dirt damaging the electronics, heavy impacts breaking them,
or things short-circuiting. To help prevent these issues, the team made sure to protect
every component as best as possible with a case or cover. None of the wire connections
are weak connections or in areas where large strains will occur to avoid wires coming
unplugged. Lastly, the team consulted with multiple electrical engineering students to
make sure everything was wired correctly and would be able to function well. The last
area of concern was the battery itself, which could either die or fail via overheating. The
team performed extensive validation tests on the battery to make sure there is as much
data as possible about battery life to inform the users. Once the insole is in the hands
of the user, it is up to them to keep the battery charged. In terms of overheating, the
team made the decision very early in the process to move the battery out of the insole to
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avoid it overheating in someone’s shoe. There are definitely more issues that could arise
involving the vibrational cue of the insole, but these were some of the main ones that the
team was able to identify and work to mitigate with the design.

3.1.4 Standards and Codes

Table 3: Project Codes and Standards.

Standard Name Governing Code/Standard
Body Number

Failure Modes and Effects Analysis SAE J1739, 2021

GD&T Dimensioning and Tolerancing ASME Y14.5, 2018

Low Rate Wireless Networks IEEE 802.15.4, 2024

Serial Port Profile 1.2: Bluetooth Specifica- | Bluetooth SPP_SPEC V12

tion

Comprehensive Guide to Tensile Testing of | ASTM D638

Plastics

Wi-Fi 4 IEEE 802.11n, 2009

Framework for Al Systems Using ML ISO 74438, 2022

General Medical Electrical Equipment Safety | IEC 60601-1

Use of Human Subjects for Research TAMU 15.999.01

Above in Table |3|is a list of the codes and standards the team consulted throughout
the course of this project. These codes and standards guided design decisions and ensured
all functionalities were accomplished safely and as successfully as possible.

3.2 Design for Manufacturing and Design for Assembly

In order to improve the manufacturability and assembly of the ComSole product, the
team took numerous steps during the design process. First, the team determined that
using 3D printing for all major mechanical components would be the fastest way to man-
ufacture the product. Rather than using something like foam cutting and fabric stitching
to create the insole, 3D printing allowed the team to quickly iterate through designs, as
well as manufacture 5 final products of high quality. Next, the team’s decision to embed
the electronics inside the insole using a stop-and-go 3D print meant that there was es-
sentially no assembly required. Placing the PCB inside the 3D print was simple and fast,
and eliminated the need to fix the top and bottom halves of the insole together using
some type of adhesive, so the assembly time was both simplified and sped up. Addition-
ally, the decision to print the electronics case out of PLA was a design for manufacturing
decision. Other 3D printing techniques, such as resin printing, were attempted, but the
printing was more labor-intensive and created lower-quality products.

3.3 Experimental Data Collection

One additional component the team went through to have better design analysis
on the insole models was to run data collection with real-life people who suffer from

49



Parkinson’s. Using some connections the team had from a local non-contact gym for
people who suffer from PD in the College Station area, two days of testing were set up to
have people come out and try the insole and collect their gait, while the product could
be tested for functionality and reliability. The following sections will go into detail about
the key results.

3.3.1 Testing Procedure

In order to collect data that would have potential biomarkers of freezing symptoms,
the team started by conducting research on previously conducted gait collection studies.
From the results seen in [0], the team decided on a three-part, 20ft walking loop for each
patient with a narrow walkway, sharp 180 degree turn, and verbal stop/start command
being three potential FOG cues. Figure [60] below shows demonstrations of each of the
three movements being conducted.

images/ExpProcedureExample.png

Figure 60: Experimental FOG motions being conducted (Removed for privacy)

As each patient went through the walking course, the data collection firmware, as
mentioned in section 2.6, was used to collect CSV-formatted 6-axis motion data from the
embedded insole IMU’s which were labeled according to each motion type, using a GUI
labeling button. Each trial was run 2 times with each respective patient for a total of
12 different walking loops over the course of 2 days and 6 different patients. Additional
post-processing was done with the data, which was then given a specific classification
based on the WWS FOG questionnaire that the team handed out to each patient, which
can be seen in Appendix B.

3.3.2 Experimental Results

After going through collection trials, the team processed each data stream from which
some key results were obtained. Of the six total patients, two were classified as potential
freezers with an average freezing score of 5.67/24 as seen in Figure [61| below.

20



Name Age PD Diagnosis (Years) FOG Score
Gerry Brower 68 11 3
Mike Harris 83 3 6
Darren Blevins 52 12 13
James Mudd 50 1 0
Mike Thompson 67 3 1
Anya Schwalen 62 6 1
Average Score 567
Standard Deviation 535

Figure 61: FOG Objective Results from Patient Questionnaires

With the results seen above, another conclusion was found with the linear trend
between the length of FOG diagnosis and the magnitude of freezing plotted below in
Figure [62|
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Figure 62: WWS FOG Classification as a function of PD diagnosis length.

After the trials were over, the team also conducted short patient interviews on user
feedback, from which overall positive feedback was given on metrics such as comfort, fit-
ment, and price. In all, the experimental trials helped validate product functionality and
design choices, confirm gait metrics and theory behind freezing symptoms, and confirm
user satisfaction.

3.4 Design Validation
3.4.1 Insole Design Validation

There were a variety of different validation techniques used during the design, man-
ufacturing, and testing stages. Testing on prototypes was used as the main source of
validation because the team prioritized prototyping early and had insoles to test with
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early enough in the semester, and the team figured this would give more accurate results.
However, the team wanted to do some FEA tests to understand the forces acting on
different components and the stresses and deformation that would result.

Starting off the validation, the team has performed multiple FEA studies on the insole.
These studies were a good starting point for analyzing the design of the insole and whether
there were going to be any major issues with comfort or longevity of components. These
studies were done using Solid Works.

The first FEA study conducted was a pressure test on the insole itself. Doing this
allowed the group to see two main things necessary for the insole design: the deformation
and the compressive stresses. To set this study up, the first step was determining how
much pressure to apply to the insole and where to apply it. The team wanted to make
sure the insole would be usable for all different body types, and so a boundary scenario
of a 300-pound person was tested since this would be the absolute maximum weight of
anyone using the ComSole product. When thinking about a step, most of a person’s
weight is distributed between their heel and the ball of their foot. A circle was used in
each spot with a split line to apply the pressure to only these points, and the area of
each circle was taken. Dividing the weight of the person by the combined surface area of
these pressure points yields the value of 65.6 psi of pressure. It was assumed that when
a person is walking, there are times when all of their weight is distributed on one foot
since the other foot is in the air, but that it is evenly distributed between the heel and
ball of their foot. The bottom of the insole was fixed because this would be supported
by the shoe. In terms of materials applied to each of the parts in SolidWorks, some
assumptions had to be made. Custom TPU materials were made and applied to both the
insole and IMU case. The properties of the insole material were set based on the filament
that was ordered and the infill used when printing (30%). This gave a compressive and
tensile strength of 6 MPa and an elastic modulus of 20 MPa [7], which were the main
properties necessary for this test. The IMU case had a compressive and tensile strength
of 20 MPa and an elastic modulus of 60 MPa because this was printed with 100% infill
[7]. Carbon steel was used for the haptic disk. The setup can be seen in Figure 63 below.
An important note is that pressure is also being applied to the heel, but for some reason,
the arrows aren’t showing up in SolidWorks.

Figure 63: FEA Pressure Test Set-Up

The first goal of the pressure test was to see how much deformation the cover was
experiencing from the pressure caused by a footstep. With the above setup, it was
found that there would be a deformation of about 0.3 mm, meaning the heel and ball
of the foot would sink into the cover by 0.3 mm. In order not to feel the components,
the group originally thought about having an air gap above the IMU case and a haptic
disk equal to this deformation amount, and that would stop the wearer from feeling the
components. However, the original FEA studies that the group ran with this air gap
above the components had higher deformation because there was less support with such
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a thin layer of TPU before an air gap. This was confirmed when the insole was printed
and worn, as the components were very easy to feel. This led to a design change to have
the air gap below the IMU case and have the overhang on the top part of the case, and
resulted in the 0.3 mm value found in this study. The group had projected a deformation
of somewhere around 0.5 mm, so this FEA result gave a better number than what was
expected. The insole was still designed with a 0.5 mm gap, giving a factor of safety of
close to 1.66. This was considered more than sufficient for any scenario because the FEA
test already was a boundary test. The deformation study can be seen in Figure [64] below.
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Figure 64: FEA Deformation Test Results

The other part of this FEA pressure test was to see how much compressive stress was
being applied to the components inside the insole. Since the team had a finite number of
functioning PCBs, the group wanted to confirm that there weren’t going to be any weird,
unexpected compressive stresses that might result in the breaking of an IMU. With the
same pressure applied, the stress results were looked at to see where the highest stresses
were going to be and what those values were. It is important to note that the SolidWorks
model for the IMU case is slightly unrealistic, as there is no o-ring in the model to absorb
the stress that will be applied. This test was mostly to see how much stress would be
applied to the IMU case and to ensure that it wouldn’t fracture and expose the IMU.
It was found that about 12.5 MPa of compressive stress would be applied to the case,
which is good analysis for deciding what is going to be possible for the design. The group
had predicted that a maximum of 10 MPa would be applied to the IMU case from the
pressure, so this exceeded expectations slightly. This number of about 12.5 MPa was not
concerning, given that the lowest TPU materials have a compressive and tensile strength
around 20 MPa at 100% infill, which is what was used for the IMU case. The results
from this study can be seen in Figure [65] below.
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Figure 65: FEA Compression Test Results

During 401, the team also performed an FEA study that gave enough data with the
original insole design, so it didn’t need to be replicated with this design. This was a
bending study to see how much strain different components would experience when a
person took a step and the insole bent. To set up this study, the heel of the insole was
fixed while the rest of it was free to move, and a force was applied to the ball of the foot
to simulate the bending that occurs during a step. It was hard to estimate the forces
required for this test, so the test was done based on the appearance of deformation in the
insole, since the team had a good idea of how an insole looks when a person is stepping.
The set-up can be seen in Figure 66| below.

Figure 66: FEA Bending Test Set Up

Overall, this FEA study showed that the strain on the components was not going to
cause an issue because they were only experiencing about 0.004%. The team was not
expecting the strain to be a high percentage because no components are in the part of
the insole where most of the bending is occurring. Two of the components being tested
have been removed from the toe side of the insole and placed in the PCB (outside the
shoe) or in the heel, so this is only applicable to the haptic disk now. The results can be
seen in Figure [67] below.
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Figure 67: FEA Bending Test Results

The team looked into doing dynamic analysis on the insole design as well, but ulti-
mately decided this wasn’t going to be beneficial for a few reasons. One was the fact
that the team was prototyping early; a lot of the design aspects that would be tested
had already been validated using the physical prototype. Another reason was that the
entire project had been done using SolidWorks, but SolidWorks doesn’t allow dynamic
analysis without a paid subscription. The team ultimately decided that the time and
costs required to complete a dynamic analysis would not warrant the results it would
provide, so the team decided to allocate that time elsewhere.

Next, throughout the process, the team created multiple prototypes in order to deter-
mine the 3D print style that would optimize the comfort and hardness of the insole, as
well as see the limitations of the insole design and where it could be improved. The first
prototype consisted of a solid infill 3D printed insole with cutouts that was filled with
a high elasticity resin and was seen in Figure when the insole design was discussed
in-depth.

From this prototype, the team was able to demonstrate that all electronic selections
made were viable. This insole also allowed for feedback from the project sponsors, giving
the team more guidance on which design aspects should be emphasized more over oth-
ers. Through conversations with them, it was determined that the curvature could be
improved to cup around the bottom of the foot better. This prototype also showed that
the epoxy resin wasn’t going to be a viable long-term solution because of the comfort and
longevity concerns described previously. Lastly, this prototype was made with 50% infill
and was extremely stiff, allowing for adjustments to be made with future prototypes. All
of this was discussed in more detail previously in the report, but it demonstrates the
impact that prototyping had on the validation process. The team had multiple different
design iterations throughout the two semesters, and each design was improved upon to
help build the final design that the team landed on. Another example of a design that a
team had during the MEEN 402 semester can be seen in Figure [68 and Figure [69| below.
This design had more elaborate curvature to it throughout, but this actually became a
negative when looking at how the insole would fit in different shoes and different user
foot shapes. It also made the insole incredibly difficult to scale as more sizes were needed,
so the team found a balance by taking into account universal principles of design []].
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Figure 68: Previous Iteration Side View

Figure 69: Previous Iteration Top View

Along with adjusting the insole shape, these different prototypes were originally used
for testing out different infills to find what was going to be the best for the final product.
However, the team realized that it would be much more efficient to design different
samples and test the mechanical properties of each sample. This was discussed in detail
in Section 2.3 in this report, but since this was also a form of validation, it is important
to mention here as well.

3.4.2 Failure Weight Test

One of the validation tests that the team performed on the physical insole after the
design was set was the failure weight test. The purpose of this test was to ensure that
the insole is durable enough and strong enough to be usable by any realistic Parkinson’s
patient. The team used a maximum weight of 300 pounds as this is the weight of an
American male in the 96th percentile for weight. When the team tested the insole during
the test, Will performed the test at a body weight of 190 pounds. To perform it, Will
went to the TAMU Rec Center and picked up different weights in 10 pound increments up
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to 230 pounds total and then loaded a 45 pound bar with the correct weight in 10 pound
increments up to 300 pounds, picking the bar up on his back. At each weight increment,
he took some steps around and made sure to put all of his weight on the insole with the
electronics inside to make sure none of them would be damaged. With 300 pounds, he
did some small jumps on the insole as well. Figure [70| depicts a snapshot of how this test
was performed.

Figure 70: Performance of Weight Test

There are some conclusions that can be drawn from this test. The first is that the
insole is durable enough to survive use by any user up to 300 pounds, given reasonable
movements expected from an older user. Another is that even with a 300-pound person,
the user cannot feel the IMU or the haptic disc inside the insole. Lastly, the entire product
is functional and easy enough to use in public, based on the experience wearing it to the
Rec Center.

3.4.3 Comfort Test

Another validation test on the physical insole that the team performed was the comfort
test. The purpose of this test was to determine if the insole is comfortable for the
average user at a level of at least 80% when compared to the user’s normal insole comfort.
To perform this test, the group had a collection of different people, including friends,
acquaintances, and Parkinson’s patients, put the insoles on and walk around in them for
about a minute. After that, the user gave a score on a scale of 1-10, with a 1 being
horrible comfort and a 10 being equivalent or better than their normal insole. The testee
would also give feedback on why they gave it the score that they did, if they had any.
Based on the 15 people who were tested, the insole had an average comfort score of 8.53
with a standard deviation of 1.09.

Some conclusions can be drawn about the comfort of the insole and some possible
changes for future production. The insole itself is very comfortable, with an average
score above what the group was aiming for. One piece of feedback was the insole gets
a little sticky after being worn for any extended period of time, which could be fixed
through the use of a fabric cover. Another point of feedback was if someone is wearing
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a shoe that isn’t the same size as the insole, they can feel the edge of the insole some
of the time. This is expected with any insole that is inside a shoe of a different size. It
would definitely be beneficial to look into manufacturing half sizes to avoid this problem
in the future. The most important conclusion was that it was very rare for anyone to feel
any of the electrical components on the bottom of their foot, which was the main goal
of the insole design. There was nobody that was tested that said anything about feeling
the IMU when they were walking. The group can’t definitively say that nobody will be
able to feel it, but this is a very positive sign.

3.4.4 Fit Test

The next validation test that the team performed on the physical insole was the fit
test. The purpose of this test was to determine if the insole would fit in different brands
of shoes and that all of the different insole sizes that the team printed out would fit in
the corresponding size shoe based on length, width, and shape. Based on the universal
principles of design [§], in order for this to be a successful device that can hopefully be
distributed to the population in the future, the insole needs to be able to be used by
people with all different sized feet and with all different shoes.

The results of performing this test were that the insoles do fit well in all of the different
shoes, including multiple different brands such as OnClouds, Nike, Reebok, and others.
All of the different sizes fit in the respective shoe size as well, showing that the insoles
are shaped correctly. There aren’t many conclusions to be drawn from this test except
for the fact that the insoles are designed well to fit into different shoes as required.

3.4.5 Battery Life Assessment

To evaluate the expected battery life of the ComSole device, the team first considered
the primary components and their respective current draws. Table [4] summarizes the
assumed active and standby currents for each component. Active current represents the
estimated draw when the component is in use, while standby current reflects the draw
when the device is in a sleep state. These currents form the basis for the runtime calcu-
lations using the standard relation ¢t = @)/1, along with duty-cycled operation calculated

as
]active : tactive + Isleep : (T - tactive)

Iav == )
& T
and including boost regulator efficiency through
[b o %ut : [load
atter - s -
v Vbattery 'n

Component  Active Current Standby Current

ESP32 100 mA 100 pA
Haptic Driver 2.4mA 4.1pA
IMU 3.11mA SpA
SD Card 150 mA 1mA
Total 155.5 mA 3.51mA

Table 4: Assumed component current loads for ComSole.
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The team performed experimental battery life tests using three PL-633450 3.7 V, 1200
mAh Li-ion batteries under continuous Bluetooth load. The battery voltage decreased
approximately linearly over time, and the boost regulator requires a minimum of 3.0-
3.1 V to maintain reliable ESP32 operation. Figure shows the measured battery
voltage during continuous BLE operation. Comparing these results to the theoretical
predictions, the team observed small differences. These discrepancies can be attributed to
factors such as measurement error, boost regulator inefficiencies, and natural variations
in component currents and actual battery capacities. Overall, the theoretical model
provides a reasonably accurate approximation of battery behavior under typical usage.

Experimental Battery Runtime Comparison

Runtime (hours)
= w [=2] -~

w

Battery 1 Battery 2 Battery 3
Battery Test

Figure 71: Experimental Battery Lifetime Chart Under Continuous BLE Transmission.

Table |5 summarizes calculated runtimes for various scenarios. Sleep mode operation
results in minimal current draw, yielding roughly 150 hours, or more than six days of
operation. Other Scenarios of varying ML, BLE, and duty-cycle operation result in
various runtime variations. The worst-case scenario was obviously a continuous FoG ML
and BLE connection that activates the haptic motor, which led to a runtime of about 3.77
hours. These results highlight how duty-cycled operation and intermittent BLE usage
can significantly extend battery life, which is further presented in Figure

Table 5: Battery runtime for various use cases.

Scenario Description Runtime (h)
Sleep Mode (Duty-Cycled, No Ultra-low current draw 150 (6+ days)
ML/BLE)
Moderate Load Periodic sensing, no BLE 22.3
FoG-Triggered ML Only Brief gait-detection bursts 16.7
FoG + BLE Periodic BLE check-ins, occa- 21.5

sional ML
BLE-Only (Experimental) Continuous BLE transmission 6.25
Continuous FoG ML + BLE Maximum load scenario 3.77
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Voltage Curves for Various Load Scenarios
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Figure 72: Battery voltage as a function of runtime for various use cases.

In practice, battery life can be extended in several ways. Increasing battery capacity
directly increases runtime, while optimizing duty cycles reduces the proportion of time
the device is active, thus lowering average current draw. Improvements in boost regulator
efficiency can also reduce the effective current drawn from the battery. Finally, designing
the system for intermittent BLE operation, rather than continuous transmission, is critical
to achieving full-day or multi-day monitoring. Careful cycling of FoG ML bursts and BLE
check-ins allows the device to conserve energy while still providing reliable functionality.

3.4.6 Latency Test

Next, the team conducted an event reaction latency test. In order to complete this,
the team recorded the time between event occurrence and cue application. This was
done by reviewing test data data sets with the machine learning model being fed the
data in real time, and examining the time between the labeled event start and the model
recognizing the event as occurring. This was done 5 times, and the results can be seen
below in Table [6] The average response time was found to be 0.472 seconds, which is
well below the team’s goal of below 5 seconds.

Table 6: Latency Test Results

Sample Number | Model Latency (s)
1 0.25
2 1.1
3 0.39
4 0.27
5 0.35
Average 0.472
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3.4.7 Accuracy test

Additionally, the team evaluated the accuracy of the machine learning model’s pre-
dictions. The results can be seen below in Figures [73] and [74]
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Figure 73: Machine Learning Model Confusion Matrix
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Figure 74: Machine Learning Model Test Performance

As seen above, the model performed exceptionally well. The model achieved a 94%
accuracy, well above the goal of 90%, as well as great precision and recall. When con-
sidering all of these metrics together, the team can confidently say that the model both
identifies when simulated freezing events are occurring, as well as does not flag normal
walking patterns as freezing events.
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3.4.8 Sampling Rate Validation

The final validation test performed was a sampling rate test. The team wanted to
ensure that all necessary data was being collected and transmitted, so the data reception
rate of the app was used to evaluate the sampling rate. As was expected, the 100 Hz
data rate was received by the app as shown below in Figure
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Figure 75: App Data Rate

3.5 Meeting Design Requirements

Table [7] shows the design requirements the team set out to satisfy with the ComSole
product, and how each of those requirements was achieved. All values listed in this table
were found using methods discussed elsewhere in this report. From this, it can be seen
how the team was successful in achieving all critical design requirements in the final
products, with the exception of the battery life target value, which is discussed in detail
in section 3.4.5.

62



Table 7: Design Requirements Table

Design Require- | Target Values Achieved Values

ment

Detect Freezing of | > 90% accuracy Machine learning model achieved
Gait 94% accuracy

Provide real-time | Less than 5 s between | Feedback time testing showed an
feedback event and feedback average latency of 0.472 seconds
Low cost Less than 200$ USD Final cost per insole pair came

out to approximately $199

mal Lifecycle of Usage

cal failure

Useful Data Extrac- | 100 Hz Sampling Fre- | 100 Hz Sampling Frequency

tion/Filtering quency achieved

Data Transmission | 5% IMU data transmis- | No IMU data loss has been seen

Loss sion loss during any phase of testing or val-
idation

Insole  Meets  Er- | Prototype US size mens | Insoles for sizes men’s 8-11 as well

gonomics  Specifica- | 811 as women’s 7 were created

tions

Insole  Meets  Er- | Perceived, 1-10 rating | Average comfort rating was 8.53

gonomics  Specifica- | above 7 with a standard deviation of 1.09

tions

Insole Will Last a Nor- | 107 strains without criti- | Unable to test insole to failure,

no critical failures occurred dur-
ing design, testing, or validation

Battery Life Under
Normal Operating
Conditions is Sufli-
cient

~1 week of normal usage

Battery able to operate system at
full power draw for an average of
6.5 hours

Thermal Management

Keep insole hardware
within specified oper-
ating  conditions via

software monitored tem-
perature conditions

No thermal events occurred dur-
ing testing or validation

3.6 Cost Accounting and Cost Model

For the ComSole Project, the team received an approved budget of approximately
$3500.00. During MEEN 401, a preliminary Bill of Materials (BOM) was developed
assuming production of ten functional insole units, with some margins to account for

prototyping, testing, and miscellaneous costs.

Since then, over the course of the 402

semester, the team ended up with 5 working insoles from the costs of 7 initial electronics
packages. These costs totaled out to be approximately $988.86 for all purchased com-
ponents in this capstone, the majority of which came from sponsor funding. The entire
breakdown is shown in Figure [76] below.
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Subcategory Item Quantity |Cost Cost Type Vendor Order Date Status
ESP32 Microcontroller 1 $19.95| Sponsor Funded ~ |Adafruit 03/27 | Deliverad
Li-ion Balleries 1 $8.99| Sponsor Funded ~ | Digikey 03/27 | Delivered
Maotor Driver 1 $7.95| Sponsor Funded ~ [Adafruit 03/27 | Deliverad
12C Cables 5 $1.95| Sponsor Funded ~ |Digikey 03/27 | Delivered
Haptic Motor 5 $1.95| Sponsor Funded ~ [Digikey 03/27 | Delivered
ICM-20948 9-DOF IMU 1 §14.95| Sponsor Funded ~ |Adafruit 03/27 | Delivered
Micro SD Breakout 1 $3.50| Sponsor Funded ~ |Adafrult 03/27 | Delivered
28 Gauge Wire 1 $18.91| Self Funded ~ |Mcmaster Carr 9/20 | Delivered
Haptic Motors (High RPM) 10 $1.95| Sponsor Funded ~ |Digikey 9/29 | Delivered
Elecironics Li-ion Batteri 5 $8.89| Sponsor Funded ~ [Amazon 10/29 | Deliverad
85A TPU Filament, 1kg 1 $45.00) Sponsor Funded ~ |Bambu Lab 03/27 | Delivered
Silicone Resin 1 $21.00) Sponsor Funded ~ |Amazon 3/27 | Deliverad
85A TPU Filament, 1kg 1 $44.00 p Funded ~ Bambu Lab 9/29 | Delivered
95A TPU Filament (Red), 1kg 1 £44.00 S Funded + Bambu Lab 020 | Deliverad
Self Adhesive Fabric 1 $9.00| Sponsor Funded =~ |Amazon 05/01 | Deliverad
Materials EG000 Super Glue 1 §10.00| Sponsor Funded ~ |Amazon 10/29 | Delivered
Metric Fastener Set 1 51400 Sponsor Funded +~ |Amazon 9/29 | Deliverad
Velcro Fabric 1 $8.00{ Sponsor Funded ~ |Amazon 10/20| Delivered
Heat Set Inserls 1 §17.00| Sponsor Funded ~ |Amazon 10/29 | Delivered
Fasteners Metal Retainment Clips 1 $9.00] Sponsor Funded ~ |Amazon 9/29 | Delivered
Clorox Wipes 1 $5.00] Self Funded * |Walmart 11/11 | Delivered
Misc Thankyou Cards 8 $4.00[ Self Funded ~ [Walmar 11711 Delivered
Custom PCE Boards 10 $14.10| Sponsor Funded ~ |PCBWay Summer Deliverad
ESF32 53 Microcontroliers 10 $20.00) Sponsor Funded ~ |Adafruil Summer Delivered
ICM-20942 9-DOF IMU 10 $14.95| Sponsor Funded ~ |Adafruit Summer Deliverad
Test Shoes 3 $10.00| Sponsor Funded ~ |[Lab Provided |Lab Provided |Delivered
3.7v, 1200maH Li-ion battery 8 $6.52| Sponsor Funded ~ [Amazon Delivered
‘Sponsor Provided | Solder Material - Sponsor Funded ~ |Lab Provided Lab Provided Delivered

Hardware Total

988.86

Sponsor Funded

932.95

Figure 76: Cumulative Capstone Final Budget
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Table 8: Itemized BOM for a Singular Insole.

Category Items Qty | Unit Price | Extended Price
Lithium TIon Polymer 1 $7.95 $7.95
Battery
Electronics Haptic Motor 1 $1.95 $1.95
and Hardware| 28 Gauge Wire 1 ft $3.08 $0.12
Custom Flex PCB 1 $28.46 $28.46
9 DOF IMU 1 $14.95 $14.95
Metric Hardware* 4 $0.05 $0.20
) PLA Filament 0.06 kg $20.00 $1.47
Materials
TPU 85A Filament 0.21 kg $37.79 $9.23
Manufacturing / Assem- | 5 hrs $15.00/hr $75.00
Labor
bly
Software  Development | 1.5 hrs | $40.00/hr $60.00
and Upkeep**
Per Insole Set Cost $199.33

*Hardware cost based on estimated fastener usage.
**Software development charge includes firmware debugging and periodic updates.

Table [§] is the finalized per-insole price breakdown based on the total budget spent
plus the hypothetical labor rates given in lecture for the assembly and production costs
incurred. A cost and percentage breakdown of all category-level costs for the combination
of both semesters’ worth of costs is shown below in Table 9.

Table 9: Holistic Cost Breakdown for ComSole Project.

Category Description Estimated Total Pro-
Share (%) | jected Cost
Materials PLA and TPU filaments, adhe- | 22 $221.00

sives, insole liners, casing attach-
ment methods.

Electronics & | Wiring, haptic motors, initial | 74 $731.00
Components | IMU’s, MCU’s, Custom Flex
PCB’s.
Software Ex- | Licenses & data. 0 $0.00
penses
Miscellaneous | Sum of the combined total mar- | 4 $37.00
gin.
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4 Broader Impacts of Design

4.1 Lifecycle of Design

As part of the design and manufacturing work, the team focused on multiple spec-
ifications to tailor the product to improve its design life-cycle. With the chosen insole
layout, one decision that was made early on was to have the electronics embedded so
that reuse in a new product would be available and easy, as the insole deteriorates under
cyclical strain. With a simple print-in-place approach, all electronics could be completely
swapped to a new insole, given that a material degradation or upgrade would deem such
necessary. In terms of maintenance, the external PCB case was designed so that all of
the electronics housed could be easily replaced or upgraded, given the need for something
like a better battery or a different microcontroller upgrade. The environmental impact
of the ComSole product is mainly related to the electronics and battery utilized, as the
main power source is a 3.3-volt lithium-ion battery, which is known to be environmentally
troublesome. Improvements for this include suggestions for manufacturers to give proper
methods of disposal and alternative battery types with less toxic chemicals, like Sodium
Ion devices.

4.2 Intellectual Property

Intellectual Property, or (IP) for short, refers to creations of the mind controlled by
law that allow for exclusive rights to the usage for a period of time. For the ComSole
product, the group itself does not have any IP rights, as it is a university research-
funded initiative, but the concept of a smart insole device with an embedded two-part
monitoring and feedback system is something that could have reason for the creation
of something like a patent for the research lab’s work and development. With patents,
the main focus of concern would be showing sufficient uniqueness from other similar
already existing devices, but given that to be true, the product could indeed become the
intellectual property of Dr. Ya Wang and the mechanical engineering department. Given
what the team has heard in the time working with the lab, it is very likely they will not
be interested in such applications until the product has reached a more complete and
ready-to-be-marketed state.

4.3 Liabilities

The ComSole product has the potential to be a serious liability concern. The insole
system includes electronics that could create safety hazards such as shocks, pokes, or fires,
so it was essential to consider how to mitigate these liabilities throughout the design
process. First, the insole’s compliant material and thick padding minimize the risk of
any electronics poking the bottom of the user’s feet. Next, all bulky and potentially
dangerous electronics, such as the battery and microcontroller, were placed outside of
the insole to minimize the risk of any breakages that could create a dangerous situation.
Additionally, the case that holds the electronics was designed with ventilation cutouts
to decrease the likelihood of any thermal runaway events that could result in sparking
or fires. Finally, the product was used extensively by the team before introducing it to
customers to ensure that they were at minimal risk for injuries. During both validation
testing and design, the team interacted with the insole product extensively to verify its
safety.
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4.4 Ethical Considerations

With the key purpose of the project being the betterment of individuals lives, partic-
ularly those who suffer from late-stage PD symptoms, ethical implications were of high
priority when designing and manufacturing the final product. One initial concern was
the issue of safety when users would be given a light vibrational feedback, which could be
intense for people with weaker lower limbs and appendages. The team looked into how
these types of stimuli would effect the human system and came to the conclusion that the
haptic disc being used wouldn’t be potent enough to do anything more than give a light
feedback sensation. Additionally, there was the other concern of making a product that
would become so expensive that people in critical need of such a device wouldn’t be able
to readily afford it. This is especially important for those who would already be having
to pay a lot in medical bills for their symptoms like most of ComSole’s clientele. The
team was able to improve this situation by utilizing the most cost effective setup with a
rapid manufacturing approach to ultimately lower the per product cost to within a range
acceptable to the standards of those who were interviewed. By being able to make a low
cost, safe, and reliable product, the ethical issues that could arise from various use cases
were heavily mitigated.
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5 Summary

5.1 Work Breakdown Structure

With the ComSole product now being a working product system, a theoretical com-
pany would be able to implement the design using the flow chart as seen below in figure

Creation of fully
working COMSOLE
- Product Arcitecture
with companion Embedded
Manutacturin .
'"A::::m,? o mobile application Software
Gustam nsole Gustom PCB Mobile
Printing Caso Printing Application
i i Working
Global 3D CAD | Python
3D CAD Modsl
Model Licensing Firmware
| 1 and
C;::’:‘ﬁ_'_':.':"' STL File Croation Distribution
30 CAD Model @ Code Creation Active app C++ code
development compiling
) ) and update
STL File Creation PLA 30 Primt "xes
Custom G-code Print post Batter)
Haptic Soldering - “.""h :“'":" processing Instalation . Installation
mbedding onto MCU
smbudding | User feedback
\ Hardwa
Imnlln‘:o:nr driver
TPU 30 Print custom PCB and improvements
MEu
Print post
processing
PRODUCT
QUALITY/FUNCTIONALITY
TESTING

Figure 77: Hypothetical Work Breakdown for Product Implementation

The primary categories for implementing the product are insole and case manufactur-
ing, app implementation, and embedded firmware. With the product still primarily in a
proof-of-concept phase, this workflow chart would be more refined as the lab continues
to progress towards a more refined and industry-ready product.

5.2 Gantt Chart

The project was primarily organized using a Gantt chart, as seen in Figure |78 below.
This tool allowed the team to break down all the primary deliverables into 5 main sub-
groups which were mechanical design, software development, data collection, validation
testing, and lecture specific tasks. As the semester progressed, tasks would be completed
and further progress would move along into a concurrent or dependent task on the time-
line. Additionally, risk assessments were done on each task item as given in the third
column color scheme, with the dark red indicating high risk tasks which were given special
attention or consideration.

68



=T T )

B G Crn

Figure 78: 402 Gantt Chart

5.3 Additional Steps to be Taken

While the current state of the design is fully functional and achieves the goals set
out by the project group, there are still some additional resources that could improve the
current functional framework. One key aspect is the identification of a wider scope of FOG
cases. Currently, the product is able to detect shuffling and stuttering symptoms using
the aforementioned machine learning model; however, there are several other varieties of
freezing gait, including stutter steps, heel strike variations, and ankle rotations. With
greater data collection and identification of the motion profiles that associate with such
features, the product could, in theory, be able to help identify a much wider variety
of freezing symptoms and, as a result, widen its impact scale. Other avenues for steps
that could be taken could include more research into material optimization for the insole
design and structure, and lower-cost electronics to improve the bottom-line costs for the
customer without sacrificing functionality.

5.4 Limitations of Current Solution

Currently, as mentioned above, the insole successfully tracks 6-axis motion data in
real time and is able to detect and mitigate basic freezing symptoms in an average delay of
around 0.5 seconds. A companion mobile application is also able to successfully connect
to the Insole via BLE and collect gait data in real time for processing and user analytics.
Within these two product architectures, some of the key limitations primarily exist in
the software side. While the machine learning model was able to be implemented with
detection accuracies as high as 90%, that was only within a very specific subset of data
training and only for a few basic motion profiles, so one limitation currently is the ability
to detect other types of freezing symptoms and maintain similar accuracies on much
larger scales of people. In addition, while the app is fully functional and collects a steady
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100 Hz data stream, the user interface currently only has a basic display of analytics,
including step counts, calories, and walking distance, but with further refinement, this
could definitely be improved and expanded upon. Finally, on the hardware side, one
current limitation is long-term reliability, as the current electromechanical integration
has several points that were seen to develop stress concentrations and have inconsistent
performance as structural housing. While these issues never fully resulted in a critical
error, they create a major limitation on the product’s ability for mass production until a
much larger emphasis on quality is taken.

5.5 Future Work

At the conclusion of the team’s time in the senior capstone program, the current
future of the ComSole product rests in the hands of Dr. Wang’s lab. Future work cur-
rently planned includes refinement of the mobile application, development of a insole with
controller embedded architecture, and an internal battery supply as well. While these
plans have yet to be fully developed, the current idea is to utilize smaller microcontrollers
available through suppliers such as adafruit and a coin-type silver oxide battery supply
to meet the thickness requirement to become fully embedded into the insole. The mobile
application is looking to see upgrades on the professional analytics page to include more
bio-feedback and information pertinent to someone like a medical professional. Additional
lessons learned to be mitigated in future work include stress concentrations developed in
the flexible PCB wiring from stiffening the connection, the need for greater data vol-
ume to train the machine learning model on, and more reliability and quality studies
on the electronic development. For the machine learning model, more data from differ-
ent patients will ensure that the model generalizes better. Additionally data collection
on different FoG episodes, apart from shuffling, would be beneficial for having a more
complete product.

In terms of insole design, there could be some slight improvements, including adding
a fabric cover and possibly having extra size options (for thinner or wider feet). Once
these aspects of the design are improved upon, the product would likely be able to start
being produced and purchased by Parkinson’s patients, which would require a plan of
action for mass production. With the current insole design requiring a 3D print to get the
necessary infill characteristics and insert the electronics, this would result in a challenge
if there were heavy demand for the product. An injection mold with a different material
could be used to get the same mechanical properties, and some kind of protective case
that could withstand the molding process would be necessary to embed the components
during manufacturing.
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A Figures

Stress vs Strain (3D Honeycomb - Red TPU)
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Figure 79: Stress—strain response for 3D honeycomb infill patterns (95A red TPU)

Stress vs Strain (Gyroid - Red TPU)
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Figure 80: Stress—strain response for gyroid infill patterns (95A

73

0.6

red TPU)



Stress vs Strain (Rectilinear - Red TPU)
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Figure 81: Stress—strain response for rectilinear infill patterns (95A red TPU)
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Figure 82: Stress—strain response for 3D honeycomb infill patterns (85A blue TPU)
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Figure 83: Stress—strain response for gyroid infill patterns (85A blue TPU)
Stress vs Strain (Rectilinear - Blue)
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Figure 84: Stress—strain response for rectilinear infill patterns (85A blue TPU)
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Figure 85:

Gender Stage of PD Summary of Key Findings

- Don has episodes multiple times in the day, no specific timing but will ocour most often when he is near countertops and doorways
- Takes Cabidopa and Levodopa for PD symptoms but has had issues with hallucenations when given too muc}
- Has tried using canes w/ visual cues proved too be ineffective and potentially dangerous, too deaf for audio cues
- deals with gestating gait (smaller and faster shuffling-like walk)
- Price would matter alot to them along with ease of use for Myrties sake
Male (Don) 4 - Don wouldnt use it but Mrytle would be interested in an app

- Larry has FoG multiple times a day
- Also is on various PD medicine, has been moderately helpful
- Has used Canes Walkers,and PT methods to help with symptoms
- Price of product and potential for a warranty would be of high importance to them
- Linda would be very intersted in an app to see Larrys walk habits
Meale (Larry) 4 - Vibrational Cueing seems like it would be the only method that would work for Larry

- Frequent FoG episodes, most common in evening
- Takes medication to help with symptoms
- Auditory and Vibrational stimulus could help for him
- Mobile App would be of interest
Male 2 -lightweight, easy to insert, and long battery life were of highest importance

- Has used o is using Canes, PT, and Medication for symptoms

- Visual and Vibrational cueing would be the most effective for her

- interested in toe-tapping/heel tapping exercises for FoG study

- uniterested in app

- price is of high importance (<100USD)
Female 5 - wants a soft cushioning insole

- Has experienced FoG but ocours very rarely with no noticeable pattems

- Has used mobility aids to help with symptoms

- Audio and Vibrational Feedback of highest priority

- high priority for low cost (<100USD)

- app would ve very helpful with stride length,variablity, and step count being important metrics
Female 3 - wants minimal parts visable and easy to insert insole

- Has experienced FoG but ocours very rarely with no noticeable patterns

- using PT and mobility aids

- no preference for cueing mode

- interested in a mobile app for data collection

- placed high priority in almost all customer needs, so would likely end up being an exensive device to meet requimments
Male

Parkinson’s Patient Interviews
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PCB Schematic
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B Forms

B.1 Customer Needs Form

COMSOLE Customer Needs Form

Hello, we are a team of engineering students at Texas A&M that are working on an insole
device for people with Parkinson's Disease. The goal of the device is to track data on the
wearer's walking patterns, use that data to predict when any abnormalities/freezing might
occur, and prevent them. Please fill out this form to the best of your ability to help our team
make choices regarding the device. If you are a caretaker, family member, or friend of
someone with Parkinson's and you are filling it out for them, please fill it out using their
information. Thank you so much!

1. Name

2.  Phone Number

3. Email

4. Gender*

Mark only one oval.
Male
Female

Other

| would prefer not to answer
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5. Which stage of Parkinson's are you currently in? *

Mark only one oval.

1 (Early)

Moderate)

(

2(

3 (Moderate to Severe)
4 (Severe)

5(

End-Stage)

6. Have you ever experienced Freezing of Gait episodes (a sudden inability to move *
forward while walking, common symptom of Parkinson's)?

Mark only one oval.

Yes

No

7. If so, how frequently do they occur?
Mark only one oval.

More than once per day
Once per day

A few times per week
Rarely

Never
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8. What times of day are any mobility symptoms most frequent?

Mark only one oval.

Morning
Afternoon
Evening

No noticeable pattern

9. Do you currently use any of the following methods to help with mobility issues?
Select all that apply.

Check all that apply.

Physical Therapy

Mobility aids (canes, walkers, etc.)

Medication

Sensory cueing techniques (rhythmic stepping, metronome)
Any data collection devices (insoles, belts, etc.)

None of the above

10.  What types of stimulation cues do you think would help with any symptoms?
Select all that apply.

Check all that apply.

Visual (ex. laser device that projects a line to step over)
Auditory (ex. metronome or rhythmic beat)

Vibrational (ex. vibration in feet)

None of these

Other:
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11.  Would you be willing to receive gentle vibrations from an insole device to help *

prevent freezing of gait episodes?

Mark only one oval.

Yes
No

Maybe, if the level of vibration could be customized

12.  Which features would you find the most valuable in an insole device? Select up to *
3.
Check all that apply.

Data collection on your gait

Mobile application to display the above data to you and provide insights
Artificial Intelligence (Al) algorithm to detect FOG episodes

Cueing technique to help prevent FOG episodes

Toe tapping or heel tapping exercises

13.  How much would you be willing to spend on an insole that has the above
features?

Mark only one oval.

Less than $100
$100-$150
$150 - $200
$200 - $250
More than $250
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14. Do you think being able to see your own mobility data and track progress in an *
application on your phone would be helpful?

Mark only one oval.

Very helpful
Somewhat helpful

Not helpful

15. Select which data you would like the device to be able to track. Select as many as *
you want.

Check all that apply.

Stride length

Stride velocity

Average number of steps
Walking speed

Stride variabilty

Customer Needs

Please rate the following aspects of a potential insole device from 1-5 (1 being low
importance and 5 being high importance) based on your opinion.

16. The insole needs to be very lightweight *

Mark only one oval.

Low High Importance
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17. Soft and have a lot of cushion *

Mark only one oval.

Low High Importance

18. Firm and provide a lot of support *

Mark only one oval.

Low High Importance

19. Minimal devices/wires/parts visible outside the shoe *

Mark only one oval.

Low High Importance

20. Easy to insert or remove *

Mark only one oval.

Low High Importance
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21. Long battery life *

Mark only one oval.

Low High Importance

22.  On/Off switch to stop tracking data *

Mark only one oval.

Low High Importance

23.  Quick recharge time *

Mark only one oval.

Low High Importance

24. The insole should be able to use some sort of cueing/stimulation technique to
help with Freezing of Gait

Mark only one oval.

Low High Importance
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25. Affordable

Mark only one oval.

Low High Importance

26. Wear/Water Resistant

Mark only one oval.

Low High Importance

27. Long-Lasting

Mark only one oval.

Low High Importance

This content is neither created nor endorsed by Google.

Google Forms
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B.2 Participant Consent Form

PHOTO AND VIDEO CONSENT FORM

To be completed following discussion with the patient

PATIENT NAME:

PATIENT'S ADDRESS:

This authorization grants permission to use your image (still or moving) and/or your spoken words in perpetuity
for educational purposes.

By signing this document, you agree:

1. To allow the recording of your image and voice (e.g., photographs, audio, or video).

2. To distribute your image or recording in any medium, be it print or electronic form, which may include the
Internet.

3. To grant permission to other entities to reproduce the images or recording for educational purposes.
4. That there is no reimbursement for the right to take, or to use your photograph or video or recording.

Nature of image and/or spoken words to be recorded:

Purpose of recording, image and/or spoken words, including the intended audience:

RESTRICTIONS AND LIMITATIONS:

[] None
Specify, if applicable:

I have read and fully understand the intent and purpose of this document and am signing it
without reservation.

Name (please print):
Signature:
Date:

Witness:
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B.3 New FoG Questionnaire

1

ooooog

2

O
O
[m]
[m]

O

3

Physical Therapy &
lv"‘v‘", Vestibular Rehabilitation

Freezing of Gait Questionnaire (FOGQ)

During your worst state—Do you walk:
0 Normally
1 Almost normally—somewhat slow
2 Slow but fully independent
3 Need assistance or walking aid
4 Unable to walk

Are your gait difficulties affecting your daily activities and independence?
0 Not at all

1 Mildly

2 Moderately

3 Severely

4 Unable to walk

Do you feel that your feet get glued to the floor while walking, making a turn or when trying to initiate walking

(freezing)?

Oo0o0o0DO0w OD0O00DO0OwN ODooOooaog

0 Never

1 Very rarely—about once a month
2 Rarely—about once a week

3 Often—about once a day

4 Always—whenever walking

How long is your longest freezing episode?
0 Never happened

11-2s

23-10s

311-30s

4 Unable to walk for more than 30 s

How long is your typical start hesitation episode (freezing when initiating the first step)?
0 None

1 Takes longer than 1 s to start walking

2 Takes longer than 3 s to start walking

3 Takes longer than 10 s to start walking

4 Takes longer than 30 s to start walking

6. How long is your typical turning hesitation: (freezing when turning)

[m]
[m]
[m]
[m]
O

0 None

1 Resume turning in 1-2's

2 Resume turning in 3-10's

3 Resume turning in 11-30 s

4 Unable to resume turning for more than 30 s

* Scoring from 0 to 24
* Higher score denotes more severe freezing of gait * MDC not established (increased sensitivity on question 3)

1456 Ferry Road e Suite 601¢ Doylestown, PA 18901 (215) 489-3234 e Fax (215) 489-0131¢ www.WWSPT.com
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C Code

C.1 Firmware Configuration (platformio.ini)
; PlatformIO Project Configuration File

; Build options: build flags , source filter

; Upload options: custom upload port, speed and extra flags
; Library options: dependencies, extra library storages

; Advanced options: extra scripting

; Please visit documentation for the other options and examples
; https://docs.platformio.org/page/projectconf.html

[env:esp32—s3—devkitm —1]
platform = espressif32
board = esp32-—s3—devkitm—1
framework = arduino
lib_deps =
wollewald /ICM20948 WEQ " 1.2.4
h2zero /NimBLE-Arduino@ "2.2.3
build_flags = —D BT NAME=""COMSOLE_M10_1” > —D DUTY_.CYCLE=10
;monitor_port = COM9
monitor_speed = 115200
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C.2 Firmware Main Code (main.cpp)

/* BLE + 1 IMU left 20250513

* new: add 3—azxis compass data

x This example demonstrates how to wuse one ICM20948 IMU with
I C

and send its data over BLE notifications.

— Solid ON: Connected
— Blinking: Not connected

*/

#include <Wire.h>
#include <NimBLEDevice.h>
#include 7"ICM20948 WE .h”
#include "fog_inference.h”
#include " features.h”

*
*
x The LED on pin 2 indicates the connection status:
*
*

// Pin definitions for I C bus and motor
#define SDA_PIN 21
#define SCL_PIN 20
#define MOTORPIN 2

// BLE UART Service UUID and Characteristics
#define UART_SERVICE_UUID ”6E400001-B5A3-F393-E0A9-E50E24DCCA9E”
#define UART TX UUID ”6E400003—B5A3-F393—E0A9-E50E24DCCAIE”

#ifndef BT NAME
#define BT NAME ”BLE-RIGHT”
#endif

#ifndef DUTY.CYCLE
#define DUTY.CYCLE 10 // in milliseconds, corresponds to 100 Hz

Hendif

// I C bus instance
TwoWire 12C1 = TwoWire(0); // I C bus

// IMU instance
ICM20948_ WE imul(&12C1, 0x68); // IMUI on I C

// BLE wvariables
NimBLECharacteristic «txChar = nullptr;
bool connected = false;

// IMU initialization status
bool imul_ok = false;
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// Data processing variables

#define WINDOW SIZE MS 2000

#define N.WINDOW_SAMPLES (WINDOWSIZEMS / DUTY.CYCLE)
50 float ax |[N.WINDOW_SAMPLES

)

]
float ay [NWINDOW.SAMPLES] ;
float az[N.WINDOW_SAMPLES];
float gx [N.WINDOW_SAMPLES];
float gy [N.-WINDOW_SAMPLES];

]

55 float gz [N.WINDOW_SAMPLES
float features[48];

)

int fog_label = 0; // Predicted label

60 // Function to initialize the IMU
bool setupIMU (ICM20948_WE &imu, const char xlabel)
{

if (limu.init())

65 Serial . printf(” -Failed-to-initialize -%s\n”, label);
return false;
}
imu . setAccRange (ICM20948_ ACC_RANGE 2G) ;
imu. setGyrRange (ICM20948_GYRO_RANGE_250) ;
70 imu . setAccDLPF (ICM20948 DLPF 6) ;
imu . setGyrDLPF (ICM20948_DLPF 6) ;

Serial.printf(” -%s-initialized\n” , label);
return true;
}
75
void setup ()
{
Serial.begin(115200);
Serial . println (” -BLE-IMU-notify - (single-1 C-bus)”);
80

// Initialize I C bus
I12C1 . begin (SDA_PIN, SCL_PIN, 100000); // I C with 100kHz

clock

// Initialize IMU
85 imul_ok = setupIMU (imul, "IMU1");

// Initialize BLE

NimBLEDevice:: init (BT NAME); // Set BLE device name

NimBLEDevice : : setSecurityAuth (false , false, false);
90

// Create BLE server and service

NimBLEServer sxpServer = NimBLEDevice:: createServer () ;
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95

100

105

110

115

120

125

130

NimBLEService xservice = pServer—>createService (

UART_SERVICE_UUID) ;

// You are missing this line:

txChar = service-—>createCharacteristic (
UART_TX_UUID,
NIMBLE PROPERTY : : NOTIFY) ;

// Manually add CCCD (Client Characteristic Configuration

Descriptor) for notifications
txChar-—>addDescriptor (new NimBLEDescriptor (

729027, // CCCD
UUID

NIMBLE PROPERTY : : READ | NIMBLE PROPERTY :: WRITE, //
PETMISSIONS

2, // mazx
length

txChar //

associtated characteristic

)

// Create RX write characteristic (not used in this example)
service—>createCharacteristic (
"6E400002—B5A3-F393—-E0A9-ES0E24DCCA9E” |
NIMBLE PROPERTY : : WRITE) ;

service—>start () ;

// Start BLE advertising

NimBLEAdvertising *adv = NimBLEDevice:: getAdvertising () ;
adv—>addServiceUUID (UART_SERVICE_UUID) ;
adv-—>setName (BT NAME) ; // Set advertised name

NimBLEAdvertisementData ad;

ad.setFlags (0x06) ;

ad .setName (BT NAME); // Set advertisement data name
adv—>setAdvertisementData (ad) ;

adv—>start () ;
Serial . println (” -BLE- advertising -started”);
Serial . printf(” -Device -Name: -%s\n” , BT NAME) ;

pinMode (BUILTIN_LED, OUTPUT) ;
digitalWrite (BUILTIN.LED, HIGH);

// Setup motor for indication
pinMode (MOTOR_PIN, OUTPUT) ;
digitalWrite (MOTORPIN, LOW) ;
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135 }

void loop ()

{
static unsigned long lastTime = 0;
140 static unsigned long lastBlinkTime = 0;
static bool lastConnectionStatus = false;

static bool ledState = false;
// Check BLE connection status
145 connected = NimBLEDevice:: getServer ()-—>getConnectedCount () >
0;

if (connected)

if (!lastConnectionStatus)

150
Serial.println (7 -BLE- client -connected” ) ;
ledState = true;
digitalWrite (BUILTIN_LED, HIGH);
}
155 // Change frequency to 10 Hz (every 100 ms)
if (connected && imul_ok && millis () — lastTime >=
DUTY_CYCLE)
{
last Time = millis () ;
160 imul.readSensor () ;
xyzFloat accl = imul.getGValues();
xyzFloat gyrl = imul.getGyrValues() ;
xyzFloat magl = imul.getMagValues () ;
165 for (int i = NWINDOWSAMPLES — 1; i > 0; i)
{
ax[i] = ax[i — 1];
ay[1] = ay[i — 1];
az[1] = az[i — 1];
170 gx[i] = gx[1 — 1];
gy[i] = gy[i — 1];
gz[i] = gz[i — 1];
}
175 ax [0] = accl.x;
ay [0] = accl.y;
az [0] = accl.z;
gx [0] = gyrl.x;
gy [0] = gyrl.y;
180 gz [0] = gyrl.z;
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215

220

}

compute_features(ax, ay, az, gx, gy, gz, NWINDOW SAMPLES,
features);
fog_label = fog_predict_label(features);

char payload[128] = {0};
snprintf(payload, sizeof(payload),
"AL:%.21,% .20, %.21-G1:%. 21 ,%. 21, %.2f-ML:%. 21 ,%.2f
%217,
accl.x, accl.y, accl.z,

gyrl.x, gyrl.y, gyrl.z,
magl.x, magl.y, magl.z);

txChar—>setValue (payload) ;
txChar—>notify () ;
digitalWrite (BUILTIN_LED, HIGH);

// Vibrate motor if fog_label is 1
digitalWrite (MOTORPIN, fog_label = 1 ? HIGH : LOW);

else

if (lastConnectionStatus)
{
Serial.println (7 -BLE- client -disconnected , -restarting -
advertising”);
delay (200) ;
NimBLEDevice:: get Advertising ()—>start () ;
ledState = false;
digitalWrite (BUILTIN_LED, TOW);
lastBlinkTime = millis () ;
}
// Blink the LED to indicate waiting for connection
if (millis () — lastBlinkTime >= 500)

lastBlinkTime = millis () ;
ledState = !ledState;
digitalWrite (BUILTIN_.LED, ledState ? HIGH : LOW);

}
}

lastConnectionStatus = connected;
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C.3 Data Collection Console (Python)

# BLE IMU GUI with Real—Time Multi—Label Markers + Start/Stop
Recording

# Supports 5 simultaneous states: FoG, Turning Left, Turning
Right , Walking Straight , Stopped

import sys

import asyncio

import threading

from bleak import BleakScanner, BleakClient

from PyQt5. QtWidgets import (
QApplication , QMainWindow, QPushButton, QComboBox,

QVBoxLayout, QWidget, QHBoxLayout, QLabel

)

from PyQt5.QtCore import pyqtSignal , QObject, QThread, QTimer

from matplotlib.backends.backend_qtiagg import FigureCanvasQTAgg
as FigureCanvas

from matplotlib.figure import Figure

import os

import datetime

UARTTX_UUID = "6E400003—B5A3-F393—E0A9-E50E24DCCA9E”

class BLEWorker (QObject ) :
imu_data_received = pyqtSignal(str, float, float, float,
float , float, float)
scan_finished = pyqtSignal(str, list)
connected = pyqtSignal (str)
disconnected = pyqtSignal(str)
error = pyqtSignal(str, str)

def __init__(self, device_id):
super (). __init__ ()
self.device_id = device_id
self.client = None
self .keep_running = False
self .loop = asyncio.new_event_loop ()
self .thread = threading.Thread(target=self.loop.
run_forever , daemon=True)
self.thread.start ()

def run_async_task(self, coro):
asyncio.run_coroutine_threadsafe(coro, self.loop)

def scan_devices(self):
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45

50

95

60

65

70

5

30

self . run_async_task(self._scan_devices())

def connect_device(self, address):
self .run_async_task(self. _connect_device(address))

def disconnect_device(self):
self .run_async_task (self._disconnect_device ())

async def _scan_devices(self):
try:
devices = await BleakScanner. discover (timeout=5.0)
self.scan_finished .emit(self.device_id , devices)
except Exception as e:
self . error.emit(self.device_id, f”Scan-error:-{e}”)

async def _connect_device(self, address):
try:
self.client = BleakClient (address)
await self.client.connect ()
self.connected.emit(self.device_id)
await self.client.start_notify (UART.TX.UUID, self.
handle_notify)
self .keep_running = True
while self.client.is_connected and self.keep_running

await asyncio.sleep (0.1)
await self.client.disconnect ()
self.disconnected.emit(self.device_id)
except Exception as e:
self .error.emit(self.device_id, f”Connect-error:-{e}
")

self.disconnected.emit(self.device_id)

async def _disconnect_device(self):
self .keep_running = False
if self.client and self.client.is_connected:
await self.client.disconnect ()
self . disconnected .emit(self.device_id)

def handle_notify(self, _, data: bytearray):
try:
text = data.decode(errors="ignore”).strip ()
acc = gyr = None

parts = text.split ()
for part in parts:
if part.startswith(7Al:”):
acc = [float (x.strip().replace(”\x00”, 77))
for x in part [3:].split(”,”)]
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85 elif part.startswith(”Gl:”):
gyr = [float (x.strip().replace(”\x00”, 77))
for x in part [3:].split(”7,”)]
if acc and gyr:
self .imu_data_received.emit(self.device_id , xacc
| xgyr)
except Exception:
90 pass

class IMUPlotCanvas(FigureCanvas) :
def __init__(self, parent=None):
95 self.fig = Figure(figsize=(5, 3))
11

self .ax = self.fig.add_subplot(111)
super (). __init__(self.fig)
self .setParent (parent)
self .update_counter = 0
100 self . update_interval = 10 # plot every 10 samples

self.y_data = {"BLE-LEFT”: [], "BLE-COMSOLE”: []}
self.t_data = {"BLE-LEFT”: [], "BLE-COMSOLE": []}
self . max_seconds = 10

105 self .ax.set_title ("IMU- Acceleration-Y”)
self . ax.set_xlabel ("Time-(s)”)
self .ax.set_ylabel ("Acc-Y-(g)”)

self.line_left , = self.ax.plot (][], [], "b—", label="BLE-
LEFT” )
110 self . line_right , = self.ax.plot ([], [], "r—", label="BLE
~COMSOLE” )

self .ax.legend ()
self . ax.set_xlim (0, self.max_seconds)
self .ax.set_ylim (0, 0.6)
self .start_time = None
115 self .recording = False # <— new flag

self.data_file = {"BLE-LEFT”: None, "BLE-COMSOLE”: None}
self.data_file_path = {"BLE-LEFT”: None, ”"BLE-COMSOLE” :

None}
self.activity_states = {
120 "fog”: False,
"turning _left”: False,

"turning_right”: False,
"walking straight”: False,
"stopped”: False,

125 }

def create_new_files(self):
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135

140

145

150

155

160

165

777 Create -new-timestamped -CSV- files - for-recording .”””
now = datetime.datetime .now ()
dt_str = now.strftime ("%Y%ndod YHAS” )
for dev in ["BLE-LEFT” , "BLE-COMSOLE" ]:
filename = f”{dev}_{dt_str}.csv”
self.data_file_path [dev] = os.path.join (os.path.
dirname (os . path.abspath( __file__)), filename)
self.data_file [dev] = open(self.data_file_path [dev],
"w”, encoding="utf-8")
self.data_file [dev]. write (
"timestamp ,acc_x ,acc_y ,acc_z ,gyr-X ,gyr.y ,gyr_z,
fog ,turning_left turning_right ,
walking_straight ,stopped\n”
)

print (f” Recording-to:-{self.data_file_path [dev]}"”)

def set_state(self , label, active):
777 Set-boolean-state-and-mark-transitions.
if label in self.activity_states:
prev = self.activity_states|[label]

MY

self.activity_states[label] = active
if prev != active and self.start_time is not None:
import time
t = time.time() — self.start_time
color = 7r” if label "fog” and active else (”
g” if active else "m”)
self.ax.axvline(t, linestyle="—" color=color

linewidth=1)
self.ax.text (

t,

self .ax.get_ylim () [1],
f”{label}-{’ON’-if -active-else- 'OFF’}”
fontsize=8,

rotation =90,

va="top” ,

ha="left” |

)
self .draw ()

def update_plot(self, device_id, acc_x, acc.y, acc_z, gyr-x,

gyT-y , gyr-z):
import time

now = time.time ()

if self.start_time is None:
self .start_time = now

t = now — self.start_time

self.t_data[device_id |.append(t)
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self.y_data[device_id |.append (acc_y)

# write only when recording is active
if self.recording and self.data_file[device_id]:
row = f7{t:.3f},{accx:.6f} {acc.y:.6f} {acc.z:.6f
Po{egyrx:.6f} {gyroy:.6f} {gyrz:.6f},” +7.,7.
join (
717 if self.activity_states[k] else "0” for k in
self.activity_states
) + 7\n”
self.data_file [device_id |. write (row)
self.data_file [device_id ]. flush ()

# trim old data
for dev in [”BLE-LEFT” , ”"BLE-COMSOLE” ]:
while self.t_data[dev] and (self.t_data[dev][—1] —
self.t_data[dev][0]) > self.max_seconds:
self.t_data[dev].pop(0)
self.y_data[dev].pop(0)

self .update_counter 4= 1
if self.update_counter % self.update_interval != 0:
return # skip plotting until enough samples
collected

self.line_left .set_data(self.t_data[”BLE-LEFT” ], self.
y_data ["BLE-LEFT” |)

self.line_right.set_data(self.t_data[”BLE-COMSOLE" |,
self.y_data [”BLE-COMSOLE” |)

all_t = self.t_data ["BLE-LEFT”] 4 self.t_data[”BLE-
COMSOLE” |
if all_t:
left = max(0, max(all_t) — self.max_seconds)
right = max(all_t)
if left = right:
right += 0.1
self .ax.set_xlim (left , right)

all_.y = self.y_data[”"BLE-LEFT”| + self.y_data|[”BLE-
COMSOLE” |
if all_y:
y_min, y max = min(all_y), max(all_y)
self .ax.set_ylim (y_min — 0.05, y_max + 0.05)

self . draw ()

def clear_plot(self):
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for dev in [?BLE LEFT”, "BLE COMSOLE |:
if self.data_file[dev]:

210 self.data_file [dev]. close ()
self.data_file [dev] = None
self.y_data = {"BLE LEFT”: [], "BLE COMSOLE": []}
self.t_data = {"BLE-LEFT”: [], "BLE-COMSOLE": []}
self .ax.clear ()
215 self .ax.set_title ("IMU- Acceleration-Y")

self .ax.set_xlabel ("Time-(s)”)
self . ax.set_ylabel ("Acc-Y-(g)”)
self.ax.legend (["BLE-LEFT” , ”"BLE-COMSOLE” |)
self .draw ()

220

class MainWindow (QMainWindow ) :
def __init__(self):
super (). __init__ ()
225 self.setWindowTitle ("BLE-IMU-GUI- (2 - Devices)”)
self . resize (800, 600)

# BLE Controls
self .scan_btn_left = QPushButton(” Scan-BLE-LEFT” )

230 self.device_combo_left = QComboBox ()
self.connect_btn_left = QPushButton(” Connect-BLE-LEFT”)
self . disconnect_btn_left = QPushButton(” Disconnect -BLE-

LEFT”)
self .scan_btn_right = QPushButton (” Scan-BLE-COMSOLE" )
235 self.device_combo_right = QComboBox ()
self.connect_btn_right = QPushButton(” Connect-BLE-
COMSOLE” )
self.disconnect_btn_right = QPushButton(” Disconnect -BLE-
COMSOLE" )

self .plot_canvas = IMUPlotCanvas(self)

240
# Recording buttons
self .start_rec_btn = QPushButton(” Start-Recording”)
self .stop_rec_btn = QPushButton(” Stop-Recording”)
rec_layout = QHBoxLayout ()

245 rec_layout .addWidget (self.start_rec_btn)
rec_layout .addWidget (self.stop_rec_btn)

# Activity buttons
self .buttons = {}
250 labels = ["FoG” , ”Turning-Left” , ” Turning-Right”, ”
Walking - Straight” , ”Stopped” |
btn_layout = QHBoxLayout ()
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260

265

270

275

280
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290

295

for

label in labels:

btn = QPushButton(label)

btn.setCheckable (True)

btn . setMinimumWidth (120)

btn.clicked .connect (lambda checked, 1=label: self.
toggle_label (1, checked))

self .buttons|[label] = btn

btn_layout.addWidget (btn)

# Layouts
left_layout = QVBoxLayout ()
left _layout.addWidget(self.scan_btn_left)

left _layout .addWidget

self.device_combo_left)

(
left _layout .addWidget(self.connect_btn_left)
(

left _layout .addWidget

self.disconnect_btn_left)

right _layout = QVBoxLayout ()

right _layout.addWidget(self.scan_btn_right)
right_layout.addWidget (self.device_combo_right)
right_layout .addWidget (self.connect_btn_right)
right_layout .addWidget (self.disconnect_btn_right)

controls_layout = QHBoxLayout ()
controls_layout .addLayout (left_layout)
controls_layout .addLayout (right_layout)

main_layout = QVBoxLayout ()

main_layout .addLayout(controls_layout)
main_layout.addLayout(rec_layout)
main_layout .addLayout(btn_layout)
main_layout.addWidget (self.plot_canvas)

container = QWidget ()
container .setLayout (main_layout)

self

self
self

.setCentralWidget (container)

.status_bar = self.statusBar ()
.status_bar.showMessage(” Status:-Idle”)

# BLE Workers

self.
self.
self.
self.
self.
self.

)

self.

ble_worker_left = BLEWorker (”BLE-LEFT”)
ble_worker_right = BLEWorker (” BLE-COMSOLE”)
ble_thread_left = QThread ()

ble_thread_right = QThread ()

ble_worker_left .moveToThread(self.ble_thread_left)
ble_worker_right .moveToThread(self.ble_thread_right

ble_thread_left.start ()
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325

330

self.ble_thread_right.start ()

# Signals
self .start_rec_btn.clicked.connect(self.start_recording)
self .stop_rec_btn.clicked.connect(self.stop_recording)

self .scan_btn_left.clicked.connect (lambda: QTimer.
singleShot (0, self.ble_worker_left.scan_devices))

self.connect_btn_left.clicked.connect(self.
start_connect_left)

self.disconnect_btn_left.clicked.connect(lambda: QTimer.
singleShot (0, self.ble_worker_left.disconnect_device)
)

self .scan_btn_right.clicked.connect (lambda: QTimer.
singleShot (0, self.ble_worker_right.scan_devices))

self.connect_btn_right.clicked.connect(self.
start_connect_right)

self.disconnect_btn_right.clicked.connect (lambda: QTimer
.singleShot (0, self.ble_worker_right.
disconnect_device))

self.ble_worker_left.scan_finished.connect(self.
on_scan_finished_left)

self.ble_worker_right.scan_finished.connect(self.
on_scan _finished_right)

self.ble_worker_left.imu_-data_received.connect(self.
plot_canvas.update_plot)

self.ble_worker_right.imu_data_received.connect(self.
plot_canvas.update_plot)

self.devices_left , self.devices_right = [], []

# —— Recording Control ——

def start_recording(self):
self .plot_canvas.create_new _files ()
self.plot_canvas.recording = True
self.status_bar.showMessage(” Recording-started.”)

def stop_recording(self):
self .plot_canvas.recording = False
for dev in [”BLE-LEFT” , "BLE-COMSOLE” |:
if self.plot_canvas.data_file[dev]:
self.plot_canvas.data_file[dev]. close ()
self .plot_canvas.data_file [dev] = None
self .status_bar.showMessage (” Recording-stopped.”)

# ——— Label Control ——
def toggle_label (self, label, active):
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340

345

350

355

360

365

» " 2 7

key = label.replace( , 7 27) . lower ()
movement_keys = ["turning_left”, ”"turning_right”,
walking _straight”, "stopped”]

b2

if key in movement_keys:
if active:
for other_label in self.buttons:
other_key = other_label.replace(”-7, 7_").
lower ()
if other_key in movement_keys and
other_label != label:
self .buttons[other_label].setChecked (
False)
self.plot_canvas.set_state (other_key ,
False)
self .plot_canvas.set_state (key, active)

elif key — ”fog” -
self .plot_canvas.set_state (key, active)

active_labels = [1 for 1, b in self.buttons.items() if b
.isChecked () |
state_text = 7, -7 .join(active_labels) if active_labels

else ”None”
self .status_bar.showMessage (f” Active:-{state_text}”)

# ——— BLE Connection Logic ——
def on_scan_finished_left (self, device_id, devices):
self.devices_left = sorted(devices, key=lambda d: d.name
OI' 7777)

self.device_combo_left.clear ()
for d in self.devices_left:
self.device_combo_left.addItem (f”{d.name-or- ’Unknown
"}-({d.address})”, d.address)
self .status_bar.showMessage (” Status: -BLE-LEFT-Scan -
complete”)

def on_scan _finished _right (self , device_id , devices):
self.devices_right = sorted(devices, key=lambda d: d.
name or "7)
self.device_combo_right.clear ()
for d in self.devices_right:
self.device_combo_right .addItem ({”{d.name-or-’
Unknown '’} - ({d.address})”, d.address)
self.status_bar.showMessage(” Status: -BLE-COMSOLE- Scan -
complete”)

def start_connect_left (self):
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idx = self.device_combo_left.currentIndex ()

370 if idx < 0:
return
address = self.device_combo_left.currentData ()

self.status_bar.showMessage(” Connecting -BLE-LEFT...”)
QTimer. singleShot (0, lambda: self.ble_worker_left .
connect_device (address))

375
def start_connect_right(self):
idx = self.device_combo_right.currentIndex ()
if idx < 0:
return
380 address = self.device_combo_right.currentData ()

self .status_bar.showMessage (” Connecting -BLE-COMSOLE. .. ")
QTimer. singleShot (0, lambda: self.ble_worker_right .
connect_device (address))

def closeEvent (self , event):
385 QTimer. singleShot (0, self.ble_worker_left.

disconnect_device)

QTimer. singleShot (0, self.ble_worker_right.
disconnect_device)

self .ble_worker_left.loop.call_soon_threadsafe(self.
ble_worker_left.loop.stop)

self . ble_worker_right.loop.call_soon_threadsafe(self.
ble_worker_right .loop.stop)

self.ble_thread_left.quit ()

390 self.ble_thread_right . quit ()
self.ble_thread_left.wait ()
self.ble_thread_right .wait ()
self.plot_canvas.clear_plot ()

event .accept ()
395

if __name. . = 7 __main__":
app = QApplication(sys.argv)
window = MainWindow ()
400 window . show ()
sys.exit (app.exec_())
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C.4 Machine Learning Training Script (Python)

# FoG detection model (manual train/val/test split)
# run with :

#  python FOG_ML_1.py —mode train

#  python FOG_ML_1.py —mode plot

import os

import glob

import argparse

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.model_selection import StratifiedShuffleSplit ,
GridSearchCV

from sklearn.preprocessing import StandardScaler

from sklearn.ensemble import RandomForestClassifier

from sklearn.metrics import (
accuracy_score , precision_score , recall_score , fl_score,
confusion_matrix , classification_report

)

from matplotlib.colors import Normalize
from joblib import dump, load

# Google Colab compatibility
# from google.colab import drive

# drive.mount(’/content/drive ’)

# %cd 7 /path/to/source”

# folders
TRAIN DIR = r” Train”
VAL_DIR = r” Validation”

TEST_DIR = r”Test”
PREDICTION.DIR = r” Prediction”
os . makedirs (PREDICTION_DIR, exist_ok=True)

ARTIFACTDIR = "artifacts”
os.makedirs (ARTIFACT DIR, exist_ok=True)

# window settings
WINDOW_SEC = 2.0
STEP SEC = 0.5
FORCEDT = 0.01
SEED = 2025
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# csv columns [ expect
REQUIRED_COLS = [”timestamp” ,”acc_x” ,”acc_y” ,”acc_z” " gyr_x",”
gyr7y77 ’77 gyrizﬂ >7’FOG”]

# load all csvs in a folder
50 def load_all_csvs(folder):
paths = sorted(glob.glob(os.path.join (folder, "x.csv”)))
if not paths:
raise FileNotFoundError(f”No-CSV-files -found-in-{folder}

")

55 dfs = []
for p in paths:
df = pd.read_csv(p)
missing = [c¢ for ¢ in REQUIRED.COLS if ¢ not in df.
columns ]
if missing:
60 raise ValueError (f”{os.path.basename(p)}-missing-
columns: - {missing}”)

df = df [REQUIRED.-COLS]. copy ()

df[”source_file”] = os.path.basename(p)
65 for ¢ in REQUIRED._COLS:
df[c] = pd.to_numeric(df[c], errors="coerce”)

df .dropna(inplace=True)
df ["FoG”] = (df["FoG”] > 0).astype(int)
70 dfs.append(df)

data = pd.concat (dfs, ignore_index=True)
return data.sort_values ([”source_file” | "timestamp”]) .
reset_index (drop=True)

75
# figure out dt but keep it fized for consistency
def infer_dt_seconds(df):
t = df[”timestamp” |. values
diffs = np. diff(t)
80 if len(diffs) = 0:
return 0.02
dt = float (np.median(np.abs(diffs)))
return dt/1000.0 if dt > 5 else max(dt, 0.01)

85
# get sliding window indices
def window_indices(n, win, step):
i=20
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while i + win <= n:
90 yield (i, i + win)
1 += step

# simple FoG label for a window
95 def window_label(fog_window):
return 1 if fog_window.mean() >= 0.3 else 0

# basic stats for one axis
100 def features,from,window(arr):

feats {}
feats[”mean | = float (np.mean(arr))
feats ["std”] = float (np.std(arr))
feats[”mm | = float (np.min(arr))
105 feats ["max” ] = float (np.max(arr))
feats[”rms ] = float (np.sqrt(np.mean(arr=*x2)))
feats ["energy”| = float (np.sum(arr*%2) / len(arr))
s = np.sign(arr — np.mean(arr))
feats [?zcr”] = float (np.mean(s[:—1] != s[1:])) if len(s) > 1
else 0.0
110 return feats

# build row of features for one window
def build_feature_row (win_df):
115 row = {}

axes = [7acc_x acc.y” 7acc_z” [ "gyr.x” Vgyr_y” " gyr_z" |

for ax in axes:

f = features_from_window (win_df[ax]. values)
120 for k, v in f.items():
row [ {7 {ax} _{k}"] = v
pairs = |
("acc_x” " acc_y”) ,("acc_x” ,"acc_z”) ,(7acc_y” " acc_ z”),
125 ("gyrx” gyr.y”) ,("gyrx”,"gyr_z”) ,("gyr.y” " gyr_z")

]

for a, b in pairs:
if win_df[a].std() > le—6 and win_df[b].std() > le—6:
130 row [ {7 corr_{a} _{b}”] = float (np.corrcoef(win_df[a],
win_df[b]) [0,1])
else:
row [f” corr_{a}_{b}”] = 0.0

return row
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180

# generate feature dataset using sliding windows
def make_windowed_dataset (df):

dt = FORCEDT

win = max(1, int (WINDOWSEC / dt))

step = max(1, int(STEP.SEC / dt))

X _rows, y.rows, meta = [|, [], []

for fname, sub in df.groupby(” source_file”):
sub = sub.reset_index (drop=True)
t0 = sub[”timestamp” |. iloc [0]

for s, e in window_indices(len(sub), win, step):
win_df = sub.iloc [s:e]
if len(win_df) < win:
continue

X_rows.append (build_feature_row (win_df))
y-rows.append (window_label (win_df ["FoG” ]))

meta . append ({

"source_file”: fname,
"t_start”: win_df[”timestamp”|.iloc [0] — tO,
"t_end”: win_df[”timestamp” |.iloc[—1] — t0

})

X = pd.DataFrame (X_rows)
y = np.array(y_-rows)
meta = pd.DataFrame (meta)

return X, y, meta

# fit RF with grid search
def fit_rf_with_grid(X_train_s, y_train):

rf = RandomForestClassifier (
random _state=42,
n_jobs=—1,

class_weight="balanced”

)

param_grid = {
"n_estimators”: [400,800,1200],
"max_depth”: [None, 20, 40],
"min_samples_split”: [2, 3, 5],
"min_samples_leaf”: [1, 2]
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185 cv = StratifiedShuffleSplit (n_splits=5, test_size=0.2,
random _state=SEED)
gs = GridSearchCV (rf, param_grid, cv=cv, scoring="f1",
n_jobs=—1)
gs. fit(X_train_s, y_train)
return gs

190
# pick threshold that gives best F1 on validation
def pick_threshold (model, X_val.s, y_val):
proba = model. predict_proba(X_val_s)[: 1]
thresholds = np.linspace (0.05, 0.95, 50)
195
scores = |
fl1_score(y_val, (proba >= t).astype(int), zero_division
—0)
for t in thresholds
]
200

return thresholds[int (np.argmax(scores)) ]

# final metrics
205 def evaluate(model, X_s, y, threshold):
proba = model. predict_proba (X_s)[:,1]
pred = (proba >= threshold).astype(int)

acc = accuracy_score (y, pred)
210 prec = precision_score(y, pred, zero_division=0)
rec = recall_score(y, pred, zero_division=0)

f1 = f1_score(y, pred, zero_division=0)

return acc, prec, rec, fl, pred
215

# draw confusion matriz
def plot_confusion_matrix (cm, title="Confusion-Matrix”):
fig , ax = plt.subplots(figsize=(4,4))
220 im = ax.imshow (cm, cmap="Blues” , norm=Normalize (vmin=0, vmax
=np.max(cm)+1))

for (i, j), val in np.ndenumerate(cm):
ax.text(j, i, f”{val}”, ha=’center’, va='center’,

fontsize=14)

225 ax.set_xlabel (” Predicted”)
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270

ax.set_ylabel (" Actual”)
ax.set_title(title)

fig . colorbar (im)
plt.tight_layout ()
return fig

# bar chart for accuracy, precision, recall, fI
def plot_metrics_bar(acc, prec, recall , f1, title="Performance”)

fig , ax = plt.subplots(figsize=(6,4))
metrics = [”Accuracy”, 7 Precision”, ”"Recall”, "F17]
values = [acc, prec, recall, f1]

ax.bar(metrics, values)
ax.set_ylim (0,1.05)

for i, v in enumerate(values):
ax.text (i, v + 0.03, f”{v:.2f}”, ha="center’, fontsize
=12)

ax.set_title(title)
plt.tight_layout ()
return fig

# top feature importance

def plot_feature_ importance (model, feature names, top_n=20):
importances = model. feature_importances._
idx = np.argsort (importances)[—top.-n :]

fig , ax = plt.subplots(figsize=(8,6))

ax.barh (np.array (feature names)[idx], importances[idx])
ax.set_title ("Top-Feature-Importances”)

ax.set_xlabel (”Importance”)

plt.tight_layout ()

return fig

# timeline plot for FoG predictions
def plot_fog_timeline (meta, y_true, y_pred):
figures = []

for file , group in meta.groupby(”source_file”):
fig , ax = plt.subplots(figsize=(10,3))

t = group[”t_start”].values
yt = y_true[group.index]
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310

yp = y_pred[group.index]

ax.step (t, yt, where="post”, label="True-FoG”, linewidth
:2)
ax.step (t, yp, where="post”, label="Predicted -FoG” ,
linestyle="—" linewidth=2, alpha=0.9)

ax.set_yticks ([0,1])

ax.set_yticklabels (["No-FoG” , "FoG”])
ax.set_xticks (np.arange(min(t), max(t)+0.1, 0.1))
ax.set_title ({”FoG- Timeline - -{file}”)
ax.set_xlabel ("Time- (s)”)

ax.legend ()

ax.grid (True, axis=’x’, alpha=0.3)
plt.tight_layout ()

figures .append(fig)

return figures

# full training process
def run_train_mode():

print ("\nLoading-data...”)

train_df = load_all_csvs (TRAIN.DIR)
val_df load_all_csvs (VALDIR)
test_df = load_all_csvs (TEST.DIR)

X_train, y_train, meta_train = make_windowed_dataset (
train_df)

X_val, y_-val, meta_val = make_windowed_dataset (val_df)

X_test, y_test, meta_test = make windowed _dataset (test_df

)

feature_path = os.path.join (ARTIFACTDIR, ”feature_names.csv

7)

if os.path.exists(feature_path):

feature_names = pd.read_csv(feature_path , header=None)
[0]. tolist ()
X_train = X_train.reindex (columns=feature_names)
X_val = X_val.reindex (columns=feature_names)
X _test = X_test.reindex (columns=feature_names)
else:
feature_.names = list (X_train.columns)
# clean
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355

X _train.replace ([np.inf, —mp.inf], np.nan, inplace=True)
X_val.replace ([np.inf, —mp.inf]|, np.nan, inplace=True)
X _test.replace ([np.inf, —mp.inf], np.nan, inplace=True)
X _train.dropna(inplace=True)

X_val.dropna(inplace=True)

X _test .dropna(inplace=True)

y-train = y_train [:len(X_train) |

y-val = y_val[:len(X_val)]

y_test = y_test[:len(X_test)]

meta_train = meta_train.iloc [:len(X_train) ]
meta_val = meta_val.iloc [:len(X_val)]
meta_test = meta_test.iloc [:len(X_test)]
# scale

scaler = StandardScaler ()

X _train_s = scaler.fit_transform (X_train)
X_val.s = scaler.transform(X_val)
X_test_s = scaler.transform(X_test)
print (” Training -model ... ")

gs = fit_rf_ with_grid (X _train_s, y_train)
model = gs.best_estimator._

threshold = pick_threshold (model, X_val_s, y_val)

# metrics
train_acc, train_prec, train_rec, train_fl , train_pred =
evaluate (model, X_train_s, y_train, threshold)

val_acc, val_prec, val_rec, val_fl, val_pred = evaluate(
model, X_val_s, y_val, threshold)
test_acc , test_prec, test_rec, test_fl, test_pred = evaluate

(model, X _test_s, y_test, threshold)

cm_test = confusion_matrix(y_test, test_pred)

# plots

plot_confusion_matrix (cm_test, title="TEST- - Confusion -
Matrix”)

plot_metrics_bar (test_acc, test_prec, test_rec, test_fl
title="TEST- -Performance”)

plot_feature_importance (model, list (X _train.columns))
plot_fog_timeline (meta_test, y_test, test_pred)

# save per—file predictions
print (" Saving - prediction -CSVs...”)
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for file_name , group in meta_test.groupby(”source_file”):

original_path = os.path.join (TEST.DIR, file_ name)
raw_df = pd.read_csv(original_path)

raw_df [”timestamp” | = pd.to_numeric (raw_df[” timestamp” |,
errors="coerce”)

t0 = raw_df[”timestamp” |. iloc [0]

raw_df [”timestamp” | = raw_df[” timestamp”] — t0

raw_df ["predicted_fog”] = 0

raw_df [”predicted_proba”] = 0.0

idxs = group.index

file_meta = meta_test.loc[idxs]

file_pred = test_pred[idxs]
file_proba = model.predict_proba (X _test_s[idxs]) [:,1]

for (., row_meta), yp, pr in zip(file_meta.iterrows(),
file_pred , file_proba):
t_start = row_meta[” t_start” |
t_end = row_meta[”t_end” |

mask = (raw_df[”timestamp”] >= t_start) & (raw_df[”
timestamp” | <= t_end)

raw_df.loc [mask, ”"predicted_fog”]| = int(yp)

raw_df.loc [mask, ”predicted_proba”] = float(pr)

7 Y

save_name = file_name.replace(”.csv”, 7 predictions.csv’

)
save_path = os.path.join (PREDICTIONDIR, save_name)
raw_df.to_csv (save_path , index=False)

# save model + artifacts
dump (model, os.path.join (ARTIFACT DIR, ”best_fog_model.
joblib™))
dump(scaler , os.path.join (ARTIFACT.DIR, ”scaler.joblib”))
pd. Series (X _train.columns).to_csv (os.path.join (ARTIFACTDIR,
"feature _names.csv”), index=False, header=False)

np.save(os.path.join (ARTIFACTDIR, ”"y_val.npy”), y_val)

np.save(os.path.join (ARTIFACTDIR, "y _test.npy”), y_test)

np.save (os.path.join (ARTIFACTDIR, ”"proba_val.npy”), model.
predict _proba(X_val_s)[:,1])

np.save (os.path.join (ARTIFACT DIR, ”proba_test.npy”), model.
predict_proba(X_test_s)[:,1])

with open(os.path.join (ARTIFACTDIR, ”threshold.txt”), "w”)
as f:
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f.write(str(threshold))

print (” Training -complete.”)
plt .show ()

# quick plot mode
def run_plot_mode () :

# meta_val = pd.read_csv(os.path.join (ARTIFACT-DIR, ”
meta_val.csv”))

# meta_test = pd.read_csv(os.path.join (ARTIFACT-DIR, ”
meta_test.csv”))

y-val = np.load (os.path.join (ARTIFACTDIR, ”y_val.npy”))
y_test = np.load(os.path.join (ARTIFACTDIR, "y _test.npy”))
proba_val = np.load (os.path.join (ARTIFACTDIR, ”proba_val.

npy”))
proba_test = np.load (os.path.join (ARTIFACTDIR, ”proba_test.

npy” ) )

with open(os.path.join (ARTIFACTDIR, ”threshold.txt”), "r”)
as f:
thr = float (f.read().strip())

val_pred = (proba_val >= thr).astype(int)
test_pred = (proba_test >= thr).astype(int)

print (classification_report (y_val, val_pred, zero_division
=0))

print (classification_report (y_-test, test_pred, zero_division
=0))

threshold = pick_threshold (model, X_val.s, y_val)
# metrics

train_acc, train_prec, train_rec, train_fl , train_pred =
evaluate (model, X_train_s, y_train, threshold)

val_acc, val_prec, val_rec, val fl, val pred = evaluate(
model, X_val_s, y_val, threshold)
test_acc, test_prec, test_rec, test_fl, test_pred = evaluate

(model, X_test_s, y_test, threshold)

cm_test = confusion_matrix(y_test, test_pred)

plot_confusion_matrix (cm_test, title="TEST- -Confusion -
Matrix” )

plot_metrics_bar (test_acc, test_prec, test_rec, test_fl
title="TEST- -Performance”)
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plot_feature_importance (model, list (X_train.columns))
plot _fog_timeline (meta_test, y_test, test_pred)

435
plt .show ()
parser = argparse.ArgumentParser ()
440 parser.add_argument ("—mode” ; choices=["train”, ”"plot”], default
="train”)
args = parser.parse_args ()
if args.mode = 7"train”:
run_train_mode ()
445 else:

run_plot_mode ()
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